These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 7706424)
21. InsP3, but not novel Ca2+ releasers, contributes to agonist-initiated contraction in rabbit airway smooth muscle. Iizuka K; Yoshii A; Dobashi K; Horie T; Mori M; Nakazawa T J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):915-33. PubMed ID: 9714870 [TBL] [Abstract][Full Text] [Related]
22. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706 [TBL] [Abstract][Full Text] [Related]
23. Inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate binding sites in smooth muscle. Zhang L; Bradley ME; Khoyi M; Westfall DP; Buxton IL Br J Pharmacol; 1993 Aug; 109(4):905-12. PubMed ID: 8401943 [TBL] [Abstract][Full Text] [Related]
24. Effects of halothane on sarcoplasmic reticulum calcium release channels in porcine airway smooth muscle cells. Pabelick CM; Prakash YS; Kannan MS; Warner DO; Sieck GC Anesthesiology; 2001 Jul; 95(1):207-15. PubMed ID: 11465560 [TBL] [Abstract][Full Text] [Related]
25. Inhibition of inositol trisphosphate-induced calcium release by caffeine is prevented by ATP. Missiaen L; Parys JB; De Smedt H; Himpens B; Casteels R Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):81-4. PubMed ID: 8198556 [TBL] [Abstract][Full Text] [Related]
26. Characterization of subcellular fractions and distribution profiles of transport components involved in Ca(2+) homeostasis in rat vas deferens. Scaramello CB; Cunha VM; Rodriguez JB; Noël F J Pharmacol Toxicol Methods; 2002; 47(2):93-8. PubMed ID: 12459148 [TBL] [Abstract][Full Text] [Related]
27. Caveolae from canine airway smooth muscle contain the necessary components for a role in Ca(2+) handling. Darby PJ; Kwan CY; Daniel EE Am J Physiol Lung Cell Mol Physiol; 2000 Dec; 279(6):L1226-35. PubMed ID: 11076813 [TBL] [Abstract][Full Text] [Related]
28. Rapid cooling-induced contractures in rat skinned skeletal muscle fibres originate from sarcoplasmic reticulum Ca2+ release through ryanodine and inositol trisphosphate receptors. Talon S; Huchet-Cadiou C; Léoty C Pflugers Arch; 2000 Nov; 441(1):108-17. PubMed ID: 11205048 [TBL] [Abstract][Full Text] [Related]
29. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Somlyo AV; Bond M; Somlyo AP; Scarpa A Proc Natl Acad Sci U S A; 1985 Aug; 82(15):5231-5. PubMed ID: 2991913 [TBL] [Abstract][Full Text] [Related]
30. Inositol polyphosphates regulate Ca2+ efflux in a cardiac membrane subtype distinct from junctional sarcoplasmic reticulum. Quist EE; Quist CW; Vasan R Arch Biochem Biophys; 2000 Dec; 384(1):181-9. PubMed ID: 11147829 [TBL] [Abstract][Full Text] [Related]
31. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. Yule DI; Ernst SA; Ohnishi H; Wojcikiewicz RJ J Biol Chem; 1997 Apr; 272(14):9093-8. PubMed ID: 9083036 [TBL] [Abstract][Full Text] [Related]
32. Inositol 1,4,5-trisphosphate-induced Ca2+ release from the sarcoplasmic reticulum and contraction in crustacean muscle. Rojas E; Nassar-Gentina V; Luxoro M; Pollard ME; Carrasco MA Can J Physiol Pharmacol; 1987 Apr; 65(4):672-80. PubMed ID: 2440541 [TBL] [Abstract][Full Text] [Related]
33. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. Mandinova A; Atar D; Schäfer BW; Spiess M; Aebi U; Heizmann CW J Cell Sci; 1998 Jul; 111 ( Pt 14)():2043-54. PubMed ID: 9645951 [TBL] [Abstract][Full Text] [Related]
34. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate. Vilven J; Coronado R Nature; 1988 Dec; 336(6199):587-9. PubMed ID: 2462164 [TBL] [Abstract][Full Text] [Related]
37. Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor. Islam MO; Yoshida Y; Koga T; Kojima M; Kangawa K; Imai S Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):295-302. PubMed ID: 8645221 [TBL] [Abstract][Full Text] [Related]
38. Agonist-evoked Ca2+ mobilization from stores expressing inositol 1,4,5-trisphosphate receptors and ryanodine receptors in cerebellar granule neurones. Simpson PB; Nahorski SR; Challiss RA J Neurochem; 1996 Jul; 67(1):364-73. PubMed ID: 8667014 [TBL] [Abstract][Full Text] [Related]
39. Ca2+ inhibition of inositol trisphosphate-induced Ca2+ release in single smooth muscle cells of guinea-pig small intestine. Zholos AV; Komori S; Ohashi H; Bolton TB J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):97-109. PubMed ID: 7531770 [TBL] [Abstract][Full Text] [Related]
40. Heterogeneity of channel density in inositol-1,4,5-trisphosphate-sensitive Ca2+ stores. Hirose K; Iino M Nature; 1994 Dec 22-29; 372(6508):791-4. PubMed ID: 7997268 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]