These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 7707269)

  • 1. Biophysics of underwater hearing in the clawed frog, Xenopus laevis.
    Christensen-Dalsgaard J; Elepfandt A
    J Comp Physiol A; 1995 Mar; 176(3):317-24. PubMed ID: 7707269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling underwater hearing and sound localization in the frog
    Vedurmudi AP; Christensen-Dalsgaard J; van Hemmen JL
    J Acoust Soc Am; 2018 Nov; 144(5):3010. PubMed ID: 30522324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans.
    Christensen-Dalsgaard J; Brandt C; Willis KL; Christensen CB; Ketten D; Edds-Walton P; Fay RR; Madsen PT; Carr CE
    Proc Biol Sci; 2012 Jul; 279(1739):2816-24. PubMed ID: 22438494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underwater hearing in the clawed frog, Xenopus laevis. Tympanic motion studied with laser vibrometry.
    Christensen-Dalsgaard J; Breithaupt T; Elepfandt A
    Naturwissenschaften; 1990 Mar; 77(3):135-7. PubMed ID: 2342580
    [No Abstract]   [Full Text] [Related]  

  • 5. Biophysics of underwater hearing in anuran amphibians.
    Hetherington TE; Lombard RE
    J Exp Biol; 1982 Jun; 98():49-66. PubMed ID: 6980964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: correlation with middle ear characteristics.
    Katbamna B; Brown JA; Collard M; Ide CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Apr; 192(4):381-7. PubMed ID: 16322997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of an increase or decrease in the middle ear pressure on tympanic membrane vibrations (experimental study by holographic interferometry)].
    Suehiro M
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Mar; 93(3):398-406. PubMed ID: 2352048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis.
    Jørgensen MB; Gerhardt HC
    J Comp Physiol A; 1991 Aug; 169(2):177-83. PubMed ID: 1748974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders.
    Capshaw G; Soares D; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33161383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underwater hearing and sound localization with and without an air interface.
    Shupak A; Sharoni Z; Yanir Y; Keynan Y; Alfie Y; Halpern P
    Otol Neurotol; 2005 Jan; 26(1):127-30. PubMed ID: 15699733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STRUCTURE AND FUNCTION OF THE MIDDLE EAR APPARATUS OF THE AQUATIC FROG, XENOPUS LAEVIS.
    Mason M; Wang M; Narins P
    Proc Inst Acoust; 2009 Jan; 31():13-21. PubMed ID: 20953303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I: Middle-ear input impedance.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1992 Jul; 92(1):157-77. PubMed ID: 1512321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tympanic and extratympanic sound transmission in the leopard frog.
    Wilczynski W; Resler C; Capranica RR
    J Comp Physiol A; 1987 Oct; 161(5):659-69. PubMed ID: 3500304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional hearing in the grass frog (Rana temporaria L.): I. Mechanical vibrations of tympanic membrane.
    Vlaming MS; Aertsen AM; Epping WJ
    Hear Res; 1984 May; 14(2):191-201. PubMed ID: 6611330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional morphology of the inner ear and underwater audiograms of Proteus anguinus (Amphibia, Urodela).
    Bulog B; Schlegel P
    Pflugers Arch; 2000; 439(3 Suppl):R165-7. PubMed ID: 10653179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of underwater hearing in larval and adult tiger salamanders Ambystoma tigrinum.
    Hetherington TE; Lombard RE
    Comp Biochem Physiol A Comp Physiol; 1983; 74(3):555-9. PubMed ID: 6132703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tetrapods.
    Christensen CB; Christensen-Dalsgaard J; Madsen PT
    J Exp Biol; 2015 Feb; 218(Pt 3):381-7. PubMed ID: 25653420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.