These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7707360)

  • 1. Distinct modes of blockade in cardiac ATP-sensitive K+ channels suggest multiple targets for inhibitory drug molecules.
    Benz I; Kohlhardt M
    J Membr Biol; 1994 Dec; 142(3):309-22. PubMed ID: 7707360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the sensitivity of cardiac outwardly-rectifying K+ channels to class III antiarrhythmics: the influence of inhibitory sulfonamide derivatives.
    Benz I; Kohlhardt M
    Naunyn Schmiedebergs Arch Pharmacol; 1995 Sep; 352(3):313-21. PubMed ID: 8584048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically modified cardiac Na+ channels and their sensitivity to antiarrhythmics: is there a hidden drug receptor?
    Benz I; Kohlhardt M
    J Membr Biol; 1994 May; 139(3):191-201. PubMed ID: 7745598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of cardiac outwardly rectifying K+ channels by TEA and class III antiarrhythmics--evidence against a single drug-sensitive channel site.
    Benz I; Kohlhardt M
    Eur Biophys J; 1994; 22(6):437-46. PubMed ID: 7512024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells.
    Gromada J; Dissing S; Kofod H; Frøkjaer-Jensen J
    Diabetologia; 1995 Sep; 38(9):1025-32. PubMed ID: 8591815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsiveness of cardiac Na+ channels to antiarrhythmic drugs: the role of inactivation.
    Benz I; Kohlhardt M
    J Membr Biol; 1991 Jun; 122(3):267-78. PubMed ID: 1656048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) channels.
    Stephan D; Winkler M; Kühner P; Russ U; Quast U
    Diabetologia; 2006 Sep; 49(9):2039-48. PubMed ID: 16865362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic inhibition impairs ATP-sensitive K+ channel block by sulfonylurea in pancreatic beta-cells.
    Mukai E; Ishida H; Kato S; Tsuura Y; Fujimoto S; Ishida-Takahashi A; Horie M; Tsuda K; Seino Y
    Am J Physiol; 1998 Jan; 274(1):E38-44. PubMed ID: 9458745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual action of ZD6169, a novel K(+) channel opener, on ATP-sensitive K(+) channels in pig urethral myocytes.
    Teramoto N; Yunoki T; Takano M; Yonemitsu Y; Masaki I; Sueishi K; Brading AF; Ito Y
    Br J Pharmacol; 2001 May; 133(1):154-64. PubMed ID: 11325805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells.
    Han X; Light PE; Giles WR; French RJ
    J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operative condition-dependent response of cardiac ATP-sensitive K+ channels toward sulfonylureas.
    Brady PA; Alekseev AE; Terzic A
    Circ Res; 1998 Feb; 82(2):272-8. PubMed ID: 9468198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies of ATP sensitive potassium channels in heart and pancreatic beta cells using Vaughan-Williams class Ia antiarrhythmics.
    Horie M; Hayashi S; Yuzuki Y; Sasayama S
    Cardiovasc Res; 1992 Nov; 26(11):1087-94. PubMed ID: 1291086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells.
    Pelletier MR; Pahapill PA; Pennefather PS; Carlen PL
    J Neurophysiol; 2000 Nov; 84(5):2291-301. PubMed ID: 11067973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells.
    Babenko AP; Gonzalez G; Aguilar-Bryan L; Bryan J
    Circ Res; 1998 Nov; 83(11):1132-43. PubMed ID: 9831708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential response of DPI-modified cardiac Na+ channels to antiarrhythmic drugs: no flicker blockade by lidocaine.
    Benz I; Kohlhardt M
    J Membr Biol; 1992 Mar; 126(3):257-63. PubMed ID: 1321251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of ATP-sensitive K(+) channels by epoxyeicosatrienoic acids in rat cardiac ventricular myocytes.
    Lu T; Hoshi T; Weintraub NL; Spector AA; Lee HC
    J Physiol; 2001 Dec; 537(Pt 3):811-27. PubMed ID: 11744757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes.
    Teramoto N; McMurray G; Brading AF
    Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle.
    Findlay I
    J Pharmacol Exp Ther; 1993 Jul; 266(1):456-67. PubMed ID: 8331572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disrupter of actin microfilaments impairs sulfonylurea-inhibitory gating of cardiac KATP channels.
    Brady PA; Alekseev AE; Aleksandrova LA; Gomez LA; Terzic A
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2710-6. PubMed ID: 8997334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.