These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 7707360)
1. Distinct modes of blockade in cardiac ATP-sensitive K+ channels suggest multiple targets for inhibitory drug molecules. Benz I; Kohlhardt M J Membr Biol; 1994 Dec; 142(3):309-22. PubMed ID: 7707360 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the sensitivity of cardiac outwardly-rectifying K+ channels to class III antiarrhythmics: the influence of inhibitory sulfonamide derivatives. Benz I; Kohlhardt M Naunyn Schmiedebergs Arch Pharmacol; 1995 Sep; 352(3):313-21. PubMed ID: 8584048 [TBL] [Abstract][Full Text] [Related]
3. Chemically modified cardiac Na+ channels and their sensitivity to antiarrhythmics: is there a hidden drug receptor? Benz I; Kohlhardt M J Membr Biol; 1994 May; 139(3):191-201. PubMed ID: 7745598 [TBL] [Abstract][Full Text] [Related]
4. Blockade of cardiac outwardly rectifying K+ channels by TEA and class III antiarrhythmics--evidence against a single drug-sensitive channel site. Benz I; Kohlhardt M Eur Biophys J; 1994; 22(6):437-46. PubMed ID: 7512024 [TBL] [Abstract][Full Text] [Related]
5. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on ATP-sensitive potassium-channels and cytosolic calcium levels in beta TC3 cells and rat pancreatic beta cells. Gromada J; Dissing S; Kofod H; Frøkjaer-Jensen J Diabetologia; 1995 Sep; 38(9):1025-32. PubMed ID: 8591815 [TBL] [Abstract][Full Text] [Related]
6. Responsiveness of cardiac Na+ channels to antiarrhythmic drugs: the role of inactivation. Benz I; Kohlhardt M J Membr Biol; 1991 Jun; 122(3):267-78. PubMed ID: 1656048 [TBL] [Abstract][Full Text] [Related]
7. Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) channels. Stephan D; Winkler M; Kühner P; Russ U; Quast U Diabetologia; 2006 Sep; 49(9):2039-48. PubMed ID: 16865362 [TBL] [Abstract][Full Text] [Related]
8. Metabolic inhibition impairs ATP-sensitive K+ channel block by sulfonylurea in pancreatic beta-cells. Mukai E; Ishida H; Kato S; Tsuura Y; Fujimoto S; Ishida-Takahashi A; Horie M; Tsuda K; Seino Y Am J Physiol; 1998 Jan; 274(1):E38-44. PubMed ID: 9458745 [TBL] [Abstract][Full Text] [Related]
9. Dual action of ZD6169, a novel K(+) channel opener, on ATP-sensitive K(+) channels in pig urethral myocytes. Teramoto N; Yunoki T; Takano M; Yonemitsu Y; Masaki I; Sueishi K; Brading AF; Ito Y Br J Pharmacol; 2001 May; 133(1):154-64. PubMed ID: 11325805 [TBL] [Abstract][Full Text] [Related]
10. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. Han X; Light PE; Giles WR; French RJ J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133 [TBL] [Abstract][Full Text] [Related]
12. Comparative studies of ATP sensitive potassium channels in heart and pancreatic beta cells using Vaughan-Williams class Ia antiarrhythmics. Horie M; Hayashi S; Yuzuki Y; Sasayama S Cardiovasc Res; 1992 Nov; 26(11):1087-94. PubMed ID: 1291086 [TBL] [Abstract][Full Text] [Related]