These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 7707914)

  • 21. Increased BOLD sensitivity in the orbitofrontal cortex using slice-dependent echo times at 3 T.
    Domsch S; Linke J; Heiler PM; Kroll A; Flor H; Wessa M; Schad LR
    Magn Reson Imaging; 2013 Feb; 31(2):201-11. PubMed ID: 22925606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of echo spacing and readout bandwidth on basic performances of EPI-fMRI acquisition sequences implemented on two 1.5 T MR scanner systems.
    Giannelli M; Diciotti S; Tessa C; Mascalchi M
    Med Phys; 2010 Jan; 37(1):303-10. PubMed ID: 20175493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generalized INverse imaging (GIN): ultrafast fMRI with physiological noise correction.
    Boyacioğlu R; Barth M
    Magn Reson Med; 2013 Oct; 70(4):962-71. PubMed ID: 23097342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal and noise of Fourier reconstructed fMRI data.
    Rowe DB; Nencka AS; Hoffmann RG
    J Neurosci Methods; 2007 Jan; 159(2):361-9. PubMed ID: 16945421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurements of tissue T1 spin-lattice relaxation time and discrimination of large draining veins using transient EPI data sets in BOLD-weighted fMRI acquisitions.
    Mazaheri Y; Biswal BB; Ward BD; Hyde JS
    Neuroimage; 2006 Aug; 32(2):603-15. PubMed ID: 16713305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence-independent segmentation of magnetic resonance images.
    Fischl B; Salat DH; van der Kouwe AJ; Makris N; Ségonne F; Quinn BT; Dale AM
    Neuroimage; 2004; 23 Suppl 1():S69-84. PubMed ID: 15501102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of functional magnetic resonance imaging data using self-organizing mapping with spatial connectivity.
    Ngan SC; Hu X
    Magn Reson Med; 1999 May; 41(5):939-46. PubMed ID: 10332877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of alternating and continuous experimental task designs during single finger opposition fMRI: a comparative study.
    Mohamed FB; Tracy JI; Faro SH; Emperado J; Koenigsberg R; Pinus A; Tsai FY
    J Comput Assist Tomogr; 2000; 24(6):935-41. PubMed ID: 11105715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel imaging with asymmetric acceleration to reduce Gibbs artifacts and to increase signal-to-noise ratio of the gradient echo echo-planar imaging sequence for functional MRI.
    Jung KJ; Zhao T
    Magn Reson Med; 2012 Feb; 67(2):419-27. PubMed ID: 21713976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimization of Nyquist ghosting for echo-planar imaging at ultra-high fields based on a "negative readout gradient" strategy.
    van der Zwaag W; Marques JP; Lei H; Just N; Kober T; Gruetter R
    J Magn Reson Imaging; 2009 Nov; 30(5):1171-8. PubMed ID: 19856451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.
    Kida I; Ueguchi T; Matsuoka Y; Zhou K; Stemmer A; Porter D
    Invest Radiol; 2016 Jul; 51(7):435-9. PubMed ID: 26807895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generalized equation for describing the magnetization in spoiled gradient-echo imaging.
    Murase K
    Magn Reson Imaging; 2011 Jun; 29(5):723-30. PubMed ID: 21524871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast Imaging Technique for fMRI: Consecutive Multishot Echo Planar Imaging Accelerated with GRAPPA Technique.
    Kang D; Sung YW; Kang CK
    Biomed Res Int; 2015; 2015():394213. PubMed ID: 26413518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units.
    Juttukonda MR; Mersereau BG; Chen Y; Su Y; Rubin BG; Benzinger TLS; Lalush DS; An H
    Neuroimage; 2015 May; 112():160-168. PubMed ID: 25776213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ROC approach for evaluating functional brain MR imaging and postprocessing protocols.
    Constable RT; Skudlarski P; Gore JC
    Magn Reson Med; 1995 Jul; 34(1):57-64. PubMed ID: 7674899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian model selection maps for group studies.
    Rosa MJ; Bestmann S; Harrison L; Penny W
    Neuroimage; 2010 Jan; 49(1):217-24. PubMed ID: 19732837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient generation of T2*-weighted contrast by interslice echo-shifting for human functional and anatomical imaging at 9.4 Tesla.
    Ehses P; Bause J; Shajan G; Scheffler K
    Magn Reson Med; 2015 Dec; 74(6):1698-704. PubMed ID: 25597997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated analysis protocol for high resolution BOLD-fMRI mapping of the fingertip somatotopy in brodmann area 3b.
    Pfannmöller JP; Schweizer R; Lotze M
    J Magn Reson Imaging; 2016 Feb; 43(2):479-86. PubMed ID: 26114834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An exploration of task based fMRI in neonates using echo-shifting to allow acquisition at longer TE without loss of temporal efficiency.
    Ferrazzi G; Nunes RG; Arichi T; Gaspar AS; Barone G; Allievi A; Vasylechko S; Abaei M; Hughes E; Rueckert D; Price AN; Hajnal JV
    Neuroimage; 2016 Feb; 127():298-306. PubMed ID: 26708014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid three-dimensional MR imaging method for tracking a bolus of contrast agent through the brain.
    van Gelderen P; Grandin C; Petrella JR; Moonen CT
    Radiology; 2000 Aug; 216(2):603-8. PubMed ID: 10924593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.