BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7708197)

  • 1. Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling.
    Yamagata Y; Obata K; Greengard P; Czernik AJ
    Neuroscience; 1995 Jan; 64(1):1-4. PubMed ID: 7708197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increment of synapsin I immunoreactivity in the hippocampus of the rat kindling model of epilepsy.
    Suemaru S; Sato K; Morimoto K; Yamada N; Sato T; Kuroda S
    Neuroreport; 2000 Apr; 11(6):1319-22. PubMed ID: 10817614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lasting change in protein phosphorylation associated with septal kindling.
    Wasterlain CG; Farber DB
    Brain Res; 1982 Sep; 247(1):191-4. PubMed ID: 7127118
    [No Abstract]   [Full Text] [Related]  

  • 4. Altered synapsin I immunoreactivity and fear behavior in male and female rats subjected to long-term amygdala kindling.
    Fournier NM; Darnbrough AL; Wintink AJ; Kalynchuk LE
    Behav Brain Res; 2009 Jan; 196(1):106-15. PubMed ID: 18703092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional alterations in the dentate gyrus after induction of long-term potentiation, kindling, and mossy fiber sprouting.
    Golarai G; Sutula TP
    J Neurophysiol; 1996 Jan; 75(1):343-53. PubMed ID: 8822562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piriform cortex efferents to the entorhinal cortex in vivo: kindling-induced potentiation and the enhancement of long-term potentiation by low-frequency piriform cortex or medial septal stimulation.
    Chapman A; Racine RJ
    Hippocampus; 1997; 7(3):257-70. PubMed ID: 9228524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice.
    Li L; Chin LS; Shupliakov O; Brodin L; Sihra TS; Hvalby O; Jensen V; Zheng D; McNamara JO; Greengard P
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9235-9. PubMed ID: 7568108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic plasticity in the pathway from the medial geniculate body to the lateral amygdala is induced by seizure repetition.
    Feng HJ; Faingold CL
    Brain Res; 2002 Aug; 946(2):198-205. PubMed ID: 12137922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kindling-induced changes in plasticity of the rat amygdala and hippocampus.
    Schubert M; Siegmund H; Pape HC; Albrecht D
    Learn Mem; 2005; 12(5):520-6. PubMed ID: 16204204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdala-kindling induces a lasting reduction of GABA-immunoreactive neurons in a discrete area of the ipsilateral piriform cortex.
    Lehmann H; Ebert U; Löscher W
    Synapse; 1998 Aug; 29(4):299-309. PubMed ID: 9661248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lasting increase in serotonin 5-HT1A but not 5-HT4 receptor subtypes in the kindled rat dentate gyrus: dissociation from local presynaptic effects.
    Cagnotto A; Crespi D; Mancini L; Manzoni C; Presti ML; Gariboldi M; Vezzani A; Mennini T
    J Neurochem; 1998 Feb; 70(2):850-7. PubMed ID: 9453582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kindling of the hippocampus and septum in vasopressin-deficient rats (Brattleboro strain).
    Gillis BJ; Cain DP
    Brain Res; 1986 Jan; 363(2):386-9. PubMed ID: 3942905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer between chemical and electrical kindling in the septal-hippocampal system.
    Wasterlain CG; Fairchild MD
    Brain Res; 1985 Apr; 331(2):261-6. PubMed ID: 3986569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ionizing radiation on the course of kindled epileptogenesis.
    Jenrow KA; Ratkewicz AE; Zalinski DN; Roszka KM; Lemke NW; Elisevich KV
    Brain Res; 2006 Jun; 1094(1):207-16. PubMed ID: 16762327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kindling induces a long-lasting change in the activity of a hippocampal membrane calmodulin-dependent protein kinase system.
    Goldenring JR; Wasterlain CG; Oestreicher AB; de Graan PN; Farber DB; Glaser G; DeLorenzo RJ
    Brain Res; 1986 Jul; 377(1):47-53. PubMed ID: 3730855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subregional changes in discharge rate, pattern, and drug sensitivity of putative GABAergic nigral neurons in the kindling model of epilepsy.
    Gernert M; Fedrowitz M; Wlaz P; Löscher W
    Eur J Neurosci; 2004 Nov; 20(9):2377-86. PubMed ID: 15525279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bidirectional changes in synapsin I phosphorylation at MAP kinase-dependent sites by acute neuronal excitation in vivo.
    Yamagata Y; Jovanovic JN; Czernik AJ; Greengard P; Obata K
    J Neurochem; 2002 Mar; 80(5):835-42. PubMed ID: 11948247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep brain stimulation of the substantia nigra pars reticulata exerts long lasting suppression of amygdala-kindled seizures.
    Shi LH; Luo F; Woodward D; Chang JY
    Brain Res; 2006 May; 1090(1):202-7. PubMed ID: 16647692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two types of neuroplasticities in the kindling phenomenon.
    Minabe Y; Emori K; Kurachi M
    Brain Res; 1991 Oct; 561(1):162-4. PubMed ID: 1797342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kindling induces transient NMDA receptor-mediated facilitation of high-frequency input in the rat dentate gyrus.
    Behr J; Heinemann U; Mody I
    J Neurophysiol; 2001 May; 85(5):2195-202. PubMed ID: 11353034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.