These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 7708486)
1. Singular over-representation of an octameric palindrome, HIP1, in DNA from many cyanobacteria. Robinson NJ; Robinson PJ; Gupta A; Bleasby AJ; Whitton BA; Morby AP Nucleic Acids Res; 1995 Mar; 23(5):729-35. PubMed ID: 7708486 [TBL] [Abstract][Full Text] [Related]
2. HIP1 propagates in cyanobacterial DNA via nucleotide substitutions but promotes excision at similar frequencies in Escherichia coli and Synechococcus PCC 7942. Robinson PJ; Cranenburgh RM; Head IM; Robinson NJ Mol Microbiol; 1997 Apr; 24(1):181-9. PubMed ID: 9140975 [TBL] [Abstract][Full Text] [Related]
3. Selection, periodicity and potential function for Highly Iterative Palindrome-1 (HIP1) in cyanobacterial genomes. Xu M; Lawrence JG; Durand D Nucleic Acids Res; 2018 Mar; 46(5):2265-2278. PubMed ID: 29432573 [TBL] [Abstract][Full Text] [Related]
4. Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1). Gupta A; Morby AP; Turner JS; Whitton BA; Robinson NJ Mol Microbiol; 1993 Jan; 7(2):189-95. PubMed ID: 8446026 [TBL] [Abstract][Full Text] [Related]
5. A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains. Smith JK; Parry JD; Day JG; Smith RJ Microbiology (Reading); 1998 Oct; 144 ( Pt 10)():2791-2801. PubMed ID: 9802020 [TBL] [Abstract][Full Text] [Related]
6. Abundance and distribution of the highly iterated palindrome 1 (HIP1) among prokaryotes. Delaye L; Moya A Mob Genet Elements; 2011 Sep; 1(3):159-168. PubMed ID: 22312590 [TBL] [Abstract][Full Text] [Related]
7. Highly Iterated Palindromic Sequences (HIPs) and Their Relationship to DNA Methyltransferases. Elhai J Life (Basel); 2015 Mar; 5(1):921-48. PubMed ID: 25789551 [TBL] [Abstract][Full Text] [Related]
8. Identification of an Na(+)-dependent transporter associated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis. Pomati F; Burns BP; Neilan BA Appl Environ Microbiol; 2004 Aug; 70(8):4711-9. PubMed ID: 15294806 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous detection of cyanobacterial DNA via polymerase chain reaction. Lane CE; Gutierrez-Wing MT; Rusch KA; Benton MG Lett Appl Microbiol; 2012 Nov; 55(5):376-83. PubMed ID: 22913815 [TBL] [Abstract][Full Text] [Related]
10. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Kaneko T; Nakamura Y; Sasamoto S; Watanabe A; Kohara M; Matsumoto M; Shimpo S; Yamada M; Tabata S DNA Res; 2003 Oct; 10(5):221-8. PubMed ID: 14686584 [TBL] [Abstract][Full Text] [Related]
11. Tabulation of thirty-one putative new genes from cyanobacteria. Gupta A; Robinson NJ; Robinson PJ Plant Mol Biol; 1995 Nov; 29(3):617-20. PubMed ID: 8534857 [TBL] [Abstract][Full Text] [Related]
12. Highly repetitive sequences and characteristics of genomic DNA in unicellular cyanobacterial strains. Asayama M; Kabasawa M; Takahashi I; Aida T; Shirai M FEMS Microbiol Lett; 1996 Apr; 137(2-3):175-81. PubMed ID: 8998982 [TBL] [Abstract][Full Text] [Related]
13. Distribution of potential type II restriction sites (palindromes) in prokaryotes. Fuglsang A Biochem Biophys Res Commun; 2003 Oct; 310(2):280-5. PubMed ID: 14521907 [TBL] [Abstract][Full Text] [Related]
14. Identification of common, unique and polymorphic microsatellites among 73 cyanobacterial genomes. Kabra R; Kapil A; Attarwala K; Rai PK; Shanker A World J Microbiol Biotechnol; 2016 Apr; 32(4):71. PubMed ID: 27030027 [TBL] [Abstract][Full Text] [Related]
15. Polyphasic detection of cyanobacteria in terrestrial biofilms. Gaylarde C; Gaylarde P; Copp J; Neilan B Biofouling; 2004 Apr; 20(2):71-9. PubMed ID: 15203960 [TBL] [Abstract][Full Text] [Related]
16. Testing of primers for the study of cyanobacterial molecular diversity by DGGE. Boutte C; Grubisic S; Balthasart P; Wilmotte A J Microbiol Methods; 2006 Jun; 65(3):542-50. PubMed ID: 16290299 [TBL] [Abstract][Full Text] [Related]
17. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Stucken K; Koch R; Dagan T Biol Res; 2013; 46(4):373-82. PubMed ID: 24510140 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes. Prabha R; Singh DP; Sinha S; Ahmad K; Rai A Mar Genomics; 2017 Apr; 32():31-39. PubMed ID: 27733306 [TBL] [Abstract][Full Text] [Related]
19. A novel plasmid recombination mechanism of the marine cyanobacterium Synechococcus sp. PCC7002. Akiyama H; Kanai S; Hirano M; Miyasaka H DNA Res; 1998 Dec; 5(6):327-34. PubMed ID: 10048481 [TBL] [Abstract][Full Text] [Related]
20. Plasmid and chromosomal DNA recovery by electroextraction of cyanobacteria. Moser D; Zarka D; Hedman C; Kallas T FEMS Microbiol Lett; 1995 May; 128(3):307-13. PubMed ID: 7781980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]