These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 7708661)

  • 21. The phylogenetic distribution of the glutaminyl-tRNA synthetase and Glu-tRNA
    Di Giulio M
    Biosystems; 2020 Oct; 196():104174. PubMed ID: 32535177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases.
    Edgell DR; Malik SB; Doolittle WF
    Mol Biol Evol; 1998 Sep; 15(9):1207-17. PubMed ID: 9729885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes.
    Iwabe N; Kuma K; Hasegawa M; Osawa S; Miyata T
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9355-9. PubMed ID: 2531898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Search for primitive Methanopyrus based on genetic distance between Val- and Ile-tRNA synthetases.
    Yu Z; Takai K; Slesarev A; Xue H; Wong JT
    J Mol Evol; 2009 Oct; 69(4):386-94. PubMed ID: 19841848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms.
    Shaul S; Nussinov R; Pupko T
    BMC Evol Biol; 2006 Mar; 6():22. PubMed ID: 16529662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aminoacyl-tRNA synthetase classes and groups in prokaryotes.
    de Farias ST; GuimarĂ£es RC
    J Theor Biol; 2008 Jan; 250(2):221-9. PubMed ID: 17983631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes.
    Gogarten JP; Kibak H; Dittrich P; Taiz L; Bowman EJ; Bowman BJ; Manolson MF; Poole RJ; Date T; Oshima T; Konishi J; Denda K; Yoshida M
    Proc Natl Acad Sci U S A; 1989 Sep; 86(17):6661-5. PubMed ID: 2528146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.
    Archibald JM; Logsdon JM; Doolittle WF
    Mol Biol Evol; 2000 Oct; 17(10):1456-66. PubMed ID: 11018153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-directed mutagenesis reveals transition-state stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases.
    Borgford TJ; Gray TE; Brand NJ; Fersht AR
    Biochemistry; 1987 Nov; 26(23):7246-50. PubMed ID: 3427072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences.
    Tiboni O; Cammarano P; Sanangelantoni AM
    J Bacteriol; 1993 May; 175(10):2961-9. PubMed ID: 8098326
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed.
    Hausmann CD; Ibba M
    FEMS Microbiol Rev; 2008 Jul; 32(4):705-21. PubMed ID: 18522650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations in the structural genes of CHO cell histidyl-, valyl-, and leucyl-tRNA synthetases.
    Ashman CR
    Somatic Cell Genet; 1978 May; 4(3):299-312. PubMed ID: 694722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rooting of the universal tree of life is not reliable.
    Philippe H; Forterre P
    J Mol Evol; 1999 Oct; 49(4):509-23. PubMed ID: 10486008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.
    Qureshi SA; Khoo B; Baumann P; Jackson SP
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6077-81. PubMed ID: 7597084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenylalanyl-tRNA synthetases as an example for comparative and evolutionary aspects of aminoacyl-tRNA synthetases.
    Rauhut R; Gabius HJ; Cramer F
    Biosystems; 1986; 19(3):173-83. PubMed ID: 3779045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Evolutionary Fate of Mitochondrial Aminoacyl-tRNA Synthetases in Amitochondrial Organisms.
    Igloi GL
    J Mol Evol; 2021 Aug; 89(7):484-493. PubMed ID: 34254168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of downstream amplification in the ilvEDA operon in isoleucyl-, valyl-, and leucyl-tRNA synthetase mutants of Escherichia coli K-12.
    Whittaker JJ; Jackson JH
    Biochem Biophys Res Commun; 1978 Jul; 83(1):226-33. PubMed ID: 358976
    [No Abstract]   [Full Text] [Related]  

  • 38. A gene fusion event in the evolution of aminoacyl-tRNA synthetases.
    Berthonneau E; Mirande M
    FEBS Lett; 2000 Mar; 470(3):300-4. PubMed ID: 10745085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life.
    Lawson FS; Charlebois RL; Dillon JA
    Mol Biol Evol; 1996 Sep; 13(7):970-7. PubMed ID: 8752005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Archaea and the prokaryote-to-eukaryote transition.
    Brown JR; Doolittle WF
    Microbiol Mol Biol Rev; 1997 Dec; 61(4):456-502. PubMed ID: 9409149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.