These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7708751)

  • 1. DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I.
    Labhart P
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2934-8. PubMed ID: 7708751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I.
    Kuhn A; Gottlieb TM; Jackson SP; Grummt I
    Genes Dev; 1995 Jan; 9(2):193-203. PubMed ID: 7851793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A step subsequent to preinitiation complex assembly at the ribosomal RNA gene promoter is rate limiting for human RNA polymerase I-dependent transcription.
    Panov KI; Friedrich JK; Zomerdijk JC
    Mol Cell Biol; 2001 Apr; 21(8):2641-9. PubMed ID: 11283244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic phosphorylation of the TBP-containing factor SL1 represses ribosomal gene transcription.
    Kuhn A; Vente A; Dorée M; Grummt I
    J Mol Biol; 1998 Nov; 284(1):1-5. PubMed ID: 9811537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Xenopus RNA polymerase I transcription factor, UBF, has a role in transcriptional enhancement distinct from that at the promoter.
    McStay B; Sullivan GJ; Cairns C
    EMBO J; 1997 Jan; 16(2):396-405. PubMed ID: 9029158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation.
    Heix J; Vente A; Voit R; Budde A; Michaelidis TM; Grummt I
    EMBO J; 1998 Dec; 17(24):7373-81. PubMed ID: 9857193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of inhibition of RNA polymerase I transcription by DNA-dependent protein kinase.
    Michaelidis TM; Grummt I
    Biol Chem; 2002 Nov; 383(11):1683-90. PubMed ID: 12530533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression of RNA polymerase I transcription by nucleolin is independent of the RNA sequence that is transcribed.
    Roger B; Moisand A; Amalric F; Bouvet P
    J Biol Chem; 2002 Mar; 277(12):10209-19. PubMed ID: 11773064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF.
    Cairns C; McStay B
    Nucleic Acids Res; 1995 Nov; 23(22):4583-90. PubMed ID: 8524646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of two steps during Xenopus ribosomal gene transcription that are sensitive to protein phosphorylation.
    Labhart P
    Mol Cell Biol; 1994 Mar; 14(3):2011-20. PubMed ID: 8114732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PTEN represses RNA Polymerase I transcription by disrupting the SL1 complex.
    Zhang C; Comai L; Johnson DL
    Mol Cell Biol; 2005 Aug; 25(16):6899-911. PubMed ID: 16055704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upstream binding factor stabilizes Rib 1, the TATA-binding-protein-containing Xenopus laevis RNA polymerase I transcription factor, by multiple protein interactions in a DNA-independent manner.
    Bodeker M; Cairns C; McStay B
    Mol Cell Biol; 1996 Oct; 16(10):5572-8. PubMed ID: 8816469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules.
    Stefanovsky VY; Pelletier G; Bazett-Jones DP; Crane-Robinson C; Moss T
    Nucleic Acids Res; 2001 Aug; 29(15):3241-7. PubMed ID: 11470882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimerization and HMG box domains 1-3 present in Xenopus UBF are sufficient for its role in transcriptional enhancement.
    Sullivan GJ; McStay B
    Nucleic Acids Res; 1998 Aug; 26(15):3555-61. PubMed ID: 9671818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA melting and promoter clearance by eukaryotic RNA polymerase I.
    Kahl BF; Li H; Paule MR
    J Mol Biol; 2000 May; 299(1):75-89. PubMed ID: 10860723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity.
    Westmark CJ; Ghose R; Huber PW
    Nucleic Acids Res; 1998 Oct; 26(20):4758-64. PubMed ID: 9753746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone acetyltransferase and protein kinase activities copurify with a putative Xenopus RNA polymerase I holoenzyme self-sufficient for promoter-dependent transcription.
    Albert AC; Denton M; Kermekchiev M; Pikaard CS
    Mol Cell Biol; 1999 Jan; 19(1):796-806. PubMed ID: 9858602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A TBP-containing multiprotein complex (TIF-IB) mediates transcription specificity of murine RNA polymerase I.
    Eberhard D; Tora L; Egly JM; Grummt I
    Nucleic Acids Res; 1993 Sep; 21(18):4180-6. PubMed ID: 8414971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of human rRNA gene transcription in mouse cells by a complete SL1 complex.
    Murano K; Okuwaki M; Momose F; Kumakura M; Ueshima S; Newbold RF; Nagata K
    J Cell Sci; 2014 Aug; 127(Pt 15):3309-19. PubMed ID: 24928901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters.
    Miller G; Panov KI; Friedrich JK; Trinkle-Mulcahy L; Lamond AI; Zomerdijk JC
    EMBO J; 2001 Mar; 20(6):1373-82. PubMed ID: 11250903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.