These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 7708770)
1. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II. Seidel R; Scharf B; Gautel M; Kleine K; Oesterhelt D; Engelhard M Proc Natl Acad Sci U S A; 1995 Mar; 92(7):3036-40. PubMed ID: 7708770 [TBL] [Abstract][Full Text] [Related]
2. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Zhang W; Brooun A; Mueller MM; Alam M Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396 [TBL] [Abstract][Full Text] [Related]
4. A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. Ferrando-May E; Brustmann B; Oesterhelt D Mol Microbiol; 1993 Sep; 9(5):943-53. PubMed ID: 7934922 [TBL] [Abstract][Full Text] [Related]
5. Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Sudo Y; Iwamoto M; Shimono K; Sumi M; Kamo N Biophys J; 2001 Feb; 80(2):916-22. PubMed ID: 11159458 [TBL] [Abstract][Full Text] [Related]
6. Removal of the transducer protein from sensory rhodopsin I exposes sites of proton release and uptake during the receptor photocycle. Olson KD; Spudich JL Biophys J; 1993 Dec; 65(6):2578-85. PubMed ID: 8312493 [TBL] [Abstract][Full Text] [Related]
7. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family. Soppa J; Duschl J; Oesterhelt D J Bacteriol; 1993 May; 175(9):2720-6. PubMed ID: 8478333 [TBL] [Abstract][Full Text] [Related]
8. Tyr-199 and charged residues of pharaonis Phoborhodopsin are important for the interaction with its transducer. Sudo Y; Iwamoto M; Shimono K; Kamo N Biophys J; 2002 Jul; 83(1):427-32. PubMed ID: 12080131 [TBL] [Abstract][Full Text] [Related]
9. Effects of three characteristic amino acid residues of pharaonis phoborhodopsin on the absorption maximum. Shimono K; Iwamoto M; Sumi M; Kamo N Photochem Photobiol; 2000 Jul; 72(1):141-5. PubMed ID: 10911739 [TBL] [Abstract][Full Text] [Related]
10. Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli. Iwamoto M; Shimono K; Sumi M; Kamo N Biophys Chem; 1999 Jun; 79(3):187-92. PubMed ID: 10443011 [TBL] [Abstract][Full Text] [Related]
11. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. Engelhard M; Scharf B; Siebert F FEBS Lett; 1996 Oct; 395(2-3):195-8. PubMed ID: 8898094 [TBL] [Abstract][Full Text] [Related]
12. Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II. Zhu J; Spudich EN; Alam M; Spudich JL Photochem Photobiol; 1997 Dec; 66(6):788-91. PubMed ID: 9421965 [TBL] [Abstract][Full Text] [Related]
13. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge. Spudich EN; Zhang W; Alam M; Spudich JL Proc Natl Acad Sci U S A; 1997 May; 94(10):4960-5. PubMed ID: 9144172 [TBL] [Abstract][Full Text] [Related]
14. A pharaonis phoborhodopsin mutant with the same retinal binding site residues as in bacteriorhodopsin. Shimono K; Furutani Y; Kandori H; Kamo N Biochemistry; 2002 May; 41(20):6504-9. PubMed ID: 12009914 [TBL] [Abstract][Full Text] [Related]
15. Electron crystallographic analysis of two-dimensional crystals of sensory rhodopsin II: a 6.9 A projection structure. Kunji ER; Spudich EN; Grisshammer R; Henderson R; Spudich JL J Mol Biol; 2001 Apr; 308(2):279-93. PubMed ID: 11327767 [TBL] [Abstract][Full Text] [Related]
16. Interaction of Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II) with its cognate transducer probed by increase in the thermal stability. Sudo Y; Yamabi M; Iwamoto M; Shimono K; Kamo N Photochem Photobiol; 2003 Nov; 78(5):511-6. PubMed ID: 14653584 [TBL] [Abstract][Full Text] [Related]
17. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. Wegener AA; Chizhov I; Engelhard M; Steinhoff HJ J Mol Biol; 2000 Aug; 301(4):881-91. PubMed ID: 10966793 [TBL] [Abstract][Full Text] [Related]
18. Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins. Spudich JL Mol Microbiol; 1998 Jun; 28(6):1051-8. PubMed ID: 9680197 [TBL] [Abstract][Full Text] [Related]
19. Identification of distinct domains for signaling and receptor interaction of the sensory rhodopsin I transducer, HtrI. Yao VJ; Spudich EN; Spudich JL J Bacteriol; 1994 Nov; 176(22):6931-5. PubMed ID: 7961454 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen bonding alteration of Thr-204 in the complex between pharaonis phoborhodopsin and its transducer protein. Sudo Y; Furutani Y; Shimono K; Kamo N; Kandori H Biochemistry; 2003 Dec; 42(48):14166-72. PubMed ID: 14640684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]