BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7708849)

  • 1. The response behaviour of LiF:Mg,Cu,P thermoluminescence dosimeters to high-energy electron beams used in radiotherapy.
    Bartolotta A; Brai M; Caputo V; Di Liberto R; Di Mariano D; Ferrara G; Puccio P; Sansone Santamaria A
    Phys Med Biol; 1995 Feb; 40(2):211-20. PubMed ID: 7708849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields.
    Fartaria MJ; Reis C; Pereira J; Pereira MF; Cardoso JV; Santos LM; Oliveira C; Holovey V; Pascoal A; Alves JG
    Phys Med Biol; 2016 Sep; 61(17):6384-99. PubMed ID: 27499104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry.
    Duggan L; Hood C; Warren-Forward H; Haque M; Kron T
    Phys Med Biol; 2004 Sep; 49(17):3831-45. PubMed ID: 15470908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti.
    Hauri P; Schneider U
    Z Med Phys; 2018 Apr; 28(2):96-109. PubMed ID: 28807441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.
    Soares CG; Ehrlich M; Padikal TN; Gromadzki ZC
    Int J Appl Radiat Isot; 1982 Nov; 33(11):1007-13. PubMed ID: 6819238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response.
    Carlsson Tedgren A; Elia R; Hedtjarn H; Olsson S; Alm Carlsson G
    Med Phys; 2012 Feb; 39(2):1133-40. PubMed ID: 22320824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchrotron radiation in the study of the variation of dose response in thermoluminescence dosimeters with radiation energy.
    Kron T; Smith A; Hyodo K
    Australas Phys Eng Sci Med; 1996 Dec; 19(4):225-36. PubMed ID: 9060209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.
    Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D
    Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoluminescent characteristics of LiF:Mg, Cu, P and CaSO4:Dy for low dose measurement.
    Del Sol Fernández S; García-Salcedo R; Mendoza JG; Sánchez-Guzmán D; Rodríguez GR; Gaona E; Montalvo TR
    Appl Radiat Isot; 2016 May; 111():50-5. PubMed ID: 26922395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of LiF:Mg,Ti thermoluminescence detectors in low-LET proton beams at ultra-high dose rates.
    Motta S; Christensen JB; Togno M; Schäfer R; Safai S; Lomax AJ; Yukihara EG
    Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36696696
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks.
    Marre D; Ferreira IH; Bridier A; Björeland A; Svensson H; Dutreix A; Chavaudra J
    Phys Med Biol; 2000 Dec; 45(12):3657-74. PubMed ID: 11131191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters.
    Kirby TH; Hanson WF; Johnston DA
    Med Phys; 1992; 19(6):1427-33. PubMed ID: 1461205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoluminescence properties of LiF:Mg,Cu,Na,Si pellets in radiation dosimetry.
    Nam YM; Kim JL
    Radiat Prot Dosimetry; 2002; 100(1-4):467-70. PubMed ID: 12382923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A thermoluminescence system for the intercomparison of absorbed dose and radiation quality of X-rays with a HVL of 0-1 to 3-0 mm Cu.
    Puite KJ
    Phys Med Biol; 1976 Mar; 21(2):216-25. PubMed ID: 1257302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of LiF:Mg,Cu,P to large scale personnel dosimetry: current status and future directions.
    Moscovitch M; St John TJ; Cassata JR; Blake PK; Rotunda JE; Ramlo M; Velbeck KJ; Luo LZ
    Radiat Prot Dosimetry; 2006; 119(1-4):248-54. PubMed ID: 16835277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray surface dose measurements using TLD extrapolation.
    Kron T; Elliot A; Wong T; Showell G; Clubb B; Metcalfe P
    Med Phys; 1993; 20(3):703-11. PubMed ID: 8350822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction factors kE and kQ for LiF-TLDs for dosimetry in megavoltage electron and photon beams.
    Bruggmoser G; Saum R; Saum F; Gainey M; Pychlau C; Kapsch RP; Zink K
    Z Med Phys; 2015 Jun; 25(2):186-91. PubMed ID: 24973310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the thermoluminescent dosimetry to a pion beam.
    Valley JF; Guérid A; Lerch P; Pache G; de Lima V; Vinckenbosch M
    Radiat Environ Biophys; 1979 Aug; 16(3):225-9. PubMed ID: 116307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energy correction factor of LiF thermoluminescent dosemeters in megavoltage electron beams: Monte Carlo simulations and experiments.
    Mobit PN; Nahum AE; Mayles P
    Phys Med Biol; 1996 Jun; 41(6):979-93. PubMed ID: 8794479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.