BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 7708855)

  • 1. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy.
    Duncan A; Meek JH; Clemence M; Elwell CE; Tyszczuk L; Cope M; Delpy DT
    Phys Med Biol; 1995 Feb; 40(2):295-304. PubMed ID: 7708855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing.
    van der Zee P; Cope M; Arridge SR; Essenpreis M; Potter LA; Edwards AD; Wyatt JS; McCormick DC; Roth SC; Reynolds EO
    Adv Exp Med Biol; 1992; 316():143-53. PubMed ID: 1288074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy.
    Duncan A; Meek JH; Clemence M; Elwell CE; Fallon P; Tyszczuk L; Cope M; Delpy DT
    Pediatr Res; 1996 May; 39(5):889-94. PubMed ID: 8726247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near infrared spectroscopy in large animals: optical pathlength and influence of hair covering and epidermal pigmentation.
    Pringle J; Roberts C; Kohl M; Lekeux P
    Vet J; 1999 Jul; 158(1):48-52. PubMed ID: 10409416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcranial optical path length in infants by near-infrared phase-shift spectroscopy.
    Benaron DA; Kurth CD; Steven JM; Delivoria-Papadopoulos M; Chance B
    J Clin Monit; 1995 Mar; 11(2):109-17. PubMed ID: 7760083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy.
    Matcher SJ; Cope M; Delpy DT
    Phys Med Biol; 1994 Jan; 39(1):177-96. PubMed ID: 7651995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General equation for the differential pathlength factor of the frontal human head depending on wavelength and age.
    Scholkmann F; Wolf M
    J Biomed Opt; 2013 Oct; 18(10):105004. PubMed ID: 24121731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating optical path and differential pathlength factor in reflectance photoplethysmography for the assessment of perfusion.
    Chatterjee S; Abay TY; Phillips JP; Kyriacou PA
    J Biomed Opt; 2018 Jul; 23(7):1-11. PubMed ID: 29998648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy.
    Ijichi S; Kusaka T; Isobe K; Okubo K; Kawada K; Namba M; Okada H; Nishida T; Imai T; Itoh S
    Pediatr Res; 2005 Sep; 58(3):568-73. PubMed ID: 16148075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR.
    Zhao H; Tanikawa Y; Gao F; Onodera Y; Sassaroli A; Tanaka K; Yamada Y
    Phys Med Biol; 2002 Jun; 47(12):2075-93. PubMed ID: 12118602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals.
    Kohl M; Nolte C; Heekeren HR; Horst S; Scholz U; Obrig H; Villringer A
    Phys Med Biol; 1998 Jun; 43(6):1771-82. PubMed ID: 9651039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of optical path length for cerebral near-infrared spectroscopy in newborn infants.
    Wyatt JS; Cope M; Delpy DT; van der Zee P; Arridge S; Edwards AD; Reynolds EO
    Dev Neurosci; 1990; 12(2):140-4. PubMed ID: 2335137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemoglobin plus myoglobin concentrations and near infrared light pathlength in phantom and pig hearts determined by diffuse reflectance spectroscopy.
    Gussakovsky E; Jilkina O; Yang Y; Kupriyanov V
    Anal Biochem; 2008 Nov; 382(2):107-15. PubMed ID: 18713616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive in vivo near-infrared optical measurement of the penetration depth in the neonatal head.
    Faris F; Thorniley M; Wickramasinghe Y; Houston R; Rolfe P; Livera N; Spencer A
    Clin Phys Physiol Meas; 1991 Nov; 12(4):353-8. PubMed ID: 1778034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute Values of Optical Properties (μ
    Scholkmann F; Zohdi H; Nasseri N; Wolf U
    Adv Exp Med Biol; 2018; 1072():325-330. PubMed ID: 30178366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral dependence of temporal point spread functions in human tissues.
    Essenpreis M; Elwell CE; Cope M; van der Zee P; Arridge SR; Delpy DT
    Appl Opt; 1993 Feb; 32(4):418-25. PubMed ID: 20802707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the Differential Pathlength Factor for Human Skin Using Monte Carlo Simulations.
    Althobaiti M
    Diagnostics (Basel); 2023 Jan; 13(2):. PubMed ID: 36673119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential pathlength factor in continuous wave functional near-infrared spectroscopy: reducing hemoglobin's cross talk in high-density recordings.
    Chiarelli AM; Perpetuini D; Filippini C; Cardone D; Merla A
    Neurophotonics; 2019 Jul; 6(3):035005. PubMed ID: 31423455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy.
    Metz AJ; Biallas M; Jenny C; Muehlemann T; Wolf M
    Adv Exp Med Biol; 2013; 765():169-175. PubMed ID: 22879030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Term Changes in Optical Properties (μ
    Zohdi H; Scholkmann F; Nasseri N; Wolf U
    Adv Exp Med Biol; 2018; 1072():331-337. PubMed ID: 30178367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.