These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7708928)

  • 21. The enhancement and the inhibition of noradrenaline-induced cyclic AMP accumulation in rat brain by stimulation of metabotropic glutamate receptors.
    Pilc A; Legutko B; Czyrak A
    Prog Neuropsychopharmacol Biol Psychiatry; 1996 May; 20(4):673-90. PubMed ID: 8843491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of chronic administration of desipramine on the cyclic AMP response in cortical slices and membranes in the rat.
    Newman ME; Lipot M; Lerer B
    Neuropharmacology; 1987 Aug; 26(8):1127-30. PubMed ID: 2821440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vasopressin inhibits cyclic AMP accumulation and adenylate cyclase activity in cerebral preparations.
    Newman ME
    FEBS Lett; 1985 Feb; 181(2):203-6. PubMed ID: 2982658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GABAB receptor modulation of adenylate cyclase activity in rat brain slices.
    Hill DR
    Br J Pharmacol; 1985 Jan; 84(1):249-57. PubMed ID: 2579700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-receptor-mediated increases in adenylate cyclase activity after chronic antidepressant treatment: relationship to receptor desensitization.
    Newman ME; Lerer B
    Eur J Pharmacol; 1989 Mar; 162(2):345-52. PubMed ID: 2721569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.
    Christensen S; Kusano E; Yusufi AN; Murayama N; Dousa TP
    J Clin Invest; 1985 Jun; 75(6):1869-79. PubMed ID: 2989335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of lithium in vitro on noradrenaline-induced cyclic AMP accumulation in rat cortical slices after reserpine-induced supersensitivity.
    Newman ME; Lichtenberg P; Belmaker RH
    Neuropharmacology; 1985 Apr; 24(4):353-5. PubMed ID: 2987730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of cyclic AMP in the prejunctional alpha 2-adrenoceptor modulation of noradrenaline release from the rat tail artery.
    Bucher B; Pain L; Stoclet JC; Illes P
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Dec; 342(6):640-9. PubMed ID: 1965731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signal transduction modulation by lithium: cell culture, cerebral microdialysis and human studies.
    Manji HK; Bitran JA; Masana MI; Chen GA; Hsiao JK; Risby ED; Rudorfer MV; Potter WZ
    Psychopharmacol Bull; 1991; 27(3):199-208. PubMed ID: 1775589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroconvulsive shock and cyclic AMP signal transduction: effects distal to the receptor.
    Newman ME; Solomon H; Lerer B
    J Neurochem; 1986 Jun; 46(6):1667-9. PubMed ID: 3009714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of lithium in vitro and ex vivo on adenylate cyclase in brain are exerted by distinct mechanisms.
    Mørk A; Geisler A
    Neuropharmacology; 1989 Mar; 28(3):307-11. PubMed ID: 2542834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of phosphoinositide turnover in neonatal rat cerebral cortex by group I- and II- selective metabotropic glutamate receptor agonists.
    Mistry R; Golding N; Challiss RA
    Br J Pharmacol; 1998 Feb; 123(3):581-9. PubMed ID: 9504400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endogenous adenosine regulates the apparent efficacy of 1-aminocyclopentyl-1S,3R-dicarboxylate inhibition of forskolin-stimulated cyclic AMP accumulation in rat cerebral cortical slices.
    Cartmell J; Kemp JA; Alexander SP; Kendall DA
    J Neurochem; 1993 Feb; 60(2):780-2. PubMed ID: 8380444
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human immunodeficiency virus type 1 Tat protein decreases cyclic AMP synthesis in rat microglia cultures.
    Patrizio M; Colucci M; Levi G
    J Neurochem; 2001 Apr; 77(2):399-407. PubMed ID: 11299302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of lithium effects on human brain and rat brain noradrenaline-sensitive adenylate cyclase.
    Klein E; Belmaker RH; Newman M; Gruszkiewicz J
    Acta Pharmacol Toxicol (Copenh); 1985; 56 Suppl 1():15-20. PubMed ID: 2984883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium, an inhibitor of cAMP-induced inositol 1,4,5-trisphosphate accumulation in Dictyostelium discoideum, inhibits activation of guanine-nucleotide-binding regulatory proteins, reduces activation of adenylylcyclase, but potentiates activation of guanylyl cyclase by cAMP.
    Peters DJ; Snaar-Jagalska BE; Van Haastert PJ; Schaap P
    Eur J Biochem; 1992 Oct; 209(1):299-304. PubMed ID: 1356770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucocorticoid administration increases receptor-mediated and forskolin-stimulated cyclic AMP accumulation in rat brain cerebral cortical slices.
    Duman RS; Strada SJ; Enna SJ
    Brain Res; 1989 Jan; 477(1-2):166-71. PubMed ID: 2539229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of lithium on cyclic AMP accumulation in isolated rat fat cells.
    Thams P; Geisler A
    Acta Pharmacol Toxicol (Copenh); 1979 Nov; 45(5):329-35. PubMed ID: 231891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of lithium and desimipramine on second messenger responses in rat hippocampus: relation to G protein effects.
    Newman ME; Shapira B; Lerer B
    Neuropharmacology; 1991 Dec; 30(12A):1297-301. PubMed ID: 1787883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of thuringiensin on adenylate cyclase in rat cerebral cortex.
    Tsai SF; Yang C; Wang SC; Wang JS; Hwang JS; Ho SP
    Toxicol Appl Pharmacol; 2004 Jan; 194(1):34-40. PubMed ID: 14728977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.