BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7709470)

  • 1. [The protein spectrum and thermostability of the lysosomal hydrolases in heat-resistant sublines of Chinese hamster cells].
    Konstantinova MF; Bogomazova AN; Beliaeva TN; Bulychev AG; Leont'eva EA
    Tsitologiia; 1994; 36(11):1113-7. PubMed ID: 7709470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat-resistant variants of the Chinese hamster ovary cell: alteration of cellular structure and expression of vimentin.
    Lee YJ; Hou ZZ; Curetty L; Armour EP; al-Saadi A; Bernstein J; Corry PM
    J Cell Physiol; 1992 Apr; 151(1):138-46. PubMed ID: 1560039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The isolation and phenotypic characteristics of heat-resistant cells from the Chinese hamster CHO-K1 line].
    Konstantinova MF; Nisman BKh; Ignatova TN
    Tsitologiia; 1994; 36(2):182-8. PubMed ID: 7809967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat protectors and heat-induced preferential redistribution of 26 and 70 kDa proteins in Chinese hamster ovary cells.
    Lee YJ; Armour EP; Borrelli MJ; Corry PM
    J Cell Physiol; 1989 Dec; 141(3):510-6. PubMed ID: 2592426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal adaptation in CHO cells at 40 degrees C: the influence of growth conditions and the role of heat shock proteins.
    Przybytkowski E; Bates JH; Bates DA; Mackillop WJ
    Radiat Res; 1986 Sep; 107(3):317-31. PubMed ID: 3749466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermotolerance and intracellular pH in two Chinese hamster cell lines adapted to growth at low pH.
    Wahl ML; Coss RA; Bobyock SB; Leeper DB; Owen CS
    J Cell Physiol; 1996 Feb; 166(2):438-45. PubMed ID: 8592004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of heat-shock transcription factor 1 in heated Chinese hamster ovary cells is dependent on the cell cycle and is inhibited by sodium vanadate.
    He L; Fox MH
    Radiat Res; 1999 Mar; 151(3):283-92. PubMed ID: 10073666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperthermia-induced cell death, thermotolerance, and heat shock proteins in normal, respiration-deficient, and glycolysis-deficient Chinese hamster cells.
    Landry J; Samson S; Chrétien P
    Cancer Res; 1986 Jan; 46(1):324-7. PubMed ID: 3940198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Expression of heat-shock proteins in neuroblastoma cells differing genetically in thermal sensitivity].
    Nisman BKh; Margulis BA; Barlovskaia VV
    Med Radiol (Mosk); 1987 Jun; 32(6):54-8. PubMed ID: 3600226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Heat-shock proteins in the nuclear matrix of Chinese hamster fibroblasts].
    Bul'diaeva TV; Akopov SB; Kuz'mina SN; Zbarskiĭ IB
    Biokhimiia; 1986 Mar; 51(3):494-504. PubMed ID: 3697422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute extracellular acidification reduces intracellular pH, 42 degrees C-induction of heat shock proteins and clonal survival of human melanoma cells grown at pH 6.7.
    Coss RA; Storck CW; Wachsberger PR; Reilly J; Leeper DB; Berd D; Wahl ML
    Int J Hyperthermia; 2004 Feb; 20(1):93-106. PubMed ID: 14612316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid analogs while inducing heat shock proteins sensitize CHO cells to thermal damage.
    Li GC; Laszlo A
    J Cell Physiol; 1985 Jan; 122(1):91-7. PubMed ID: 3965486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock proteins within the mammalian cell cycle: relationship to thermal sensitivity, thermal tolerance, and cell cycle progression.
    Rice G; Laszlo A; Li G; Gray J; Dewey W
    J Cell Physiol; 1986 Feb; 126(2):291-7. PubMed ID: 3944210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucocorticoid-induced heat resistance in mammalian cells.
    Fisher GA; Anderson RL; Hahn GM
    J Cell Physiol; 1986 Jul; 128(1):127-32. PubMed ID: 3722271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell proliferation, protein turnover, and the decay of thermotolerance in CHO cells.
    Gerweck LE; Epstein LF
    Radiat Res; 1986 Jun; 106(3):311-20. PubMed ID: 3714978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Number, activity and thermostability of the electrophoretic forms of acid phosphatase in Amoeba proteus, cultured at different temperatures].
    Sopina VA
    Tsitologiia; 2001; 43(6):electrothermal. PubMed ID: 11534183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of colony formation of NIH 3T3 cells by the expression of the small molecular weight heat shock protein HSP27: involvement of its phosphorylation and aggregation at the C-terminal region.
    Arata S; Hamaguchi S; Nose K
    J Cell Physiol; 1997 Jan; 170(1):19-26. PubMed ID: 9012781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock protein levels are not elevated in heat-resistant B16 melanoma cells.
    Anderson RL; Tao TW; Betten DA; Hahn GM
    Radiat Res; 1986 Feb; 105(2):240-6. PubMed ID: 3952273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of tolerance to hypothermia and hyperthermia by a common mechanism in mammalian cells.
    Glofcheski DJ; Borrelli MJ; Stafford DM; Kruuv J
    J Cell Physiol; 1993 Jul; 156(1):104-11. PubMed ID: 8314851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock glycoprotein GP50: product of the retinoic acid-inducible J6 gene.
    Henle KJ; Wang SY; Nagle WA; Lumpkin CK
    Exp Cell Res; 1994 Feb; 210(2):185-91. PubMed ID: 8299716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.