These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 7709490)
21. Comparison of in vitro hydrolysis, subcutaneous and intramedullary implantation to evaluate the strength retention of absorbable osteosynthesis implants. Vasenius J; Vainionpää S; Vihtonen K; Mäkelä A; Rokkanen P; Mero M; Törmälä P Biomaterials; 1990 Sep; 11(7):501-4. PubMed ID: 2173632 [TBL] [Abstract][Full Text] [Related]
22. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures. Hasegawa S; Ishii S; Tamura J; Furukawa T; Neo M; Matsusue Y; Shikinami Y; Okuno M; Nakamura T Biomaterials; 2006 Mar; 27(8):1327-32. PubMed ID: 16213581 [TBL] [Abstract][Full Text] [Related]
23. [Induction of sarcoma by resorbable osteosynthesis material in the rat. A preliminary report]. Hoppert T; Pistner H; Stolte M; Mühling J Z Orthop Ihre Grenzgeb; 1992; 130(3):244-7. PubMed ID: 1642042 [TBL] [Abstract][Full Text] [Related]
24. Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal fixation of fractures: a study in rats. Bos RR; Rozema FR; Boering G; Nijenhuis AJ; Pennings AJ; Verwey AB; Nieuwenhuis P; Jansen HW Biomaterials; 1991 Jan; 12(1):32-6. PubMed ID: 2009343 [TBL] [Abstract][Full Text] [Related]
25. Biomechanical and histological evaluation of the application of biodegradable poly-L-lactic cushion to the plate internal fixation for bone fracture healing. Fan Y; Xiu K; Duan H; Zhang M Clin Biomech (Bristol); 2008; 23 Suppl 1():S7-S16. PubMed ID: 18291564 [TBL] [Abstract][Full Text] [Related]
26. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures]. Li X; Zou J; Zhu G; Qi X; Pu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897 [TBL] [Abstract][Full Text] [Related]
27. Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures. Furukawa T; Matsusue Y; Yasunaga T; Shikinami Y; Okuno M; Nakamura T Biomaterials; 2000 May; 21(9):889-98. PubMed ID: 10735465 [TBL] [Abstract][Full Text] [Related]
28. Long-term study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures: a 2-4-year follow-up study in rabbits. Ishii S; Tamura J; Furukawa T; Nakamura T; Matsusue Y; Shikinami Y; Okuno M J Biomed Mater Res B Appl Biomater; 2003 Aug; 66(2):539-47. PubMed ID: 12861605 [TBL] [Abstract][Full Text] [Related]
29. Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers. Winet H; Bao JY J Biomater Sci Polym Ed; 1997; 8(7):517-32. PubMed ID: 9195331 [TBL] [Abstract][Full Text] [Related]
30. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation. Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619 [TBL] [Abstract][Full Text] [Related]
31. Degradation behavior of composite pins made of tricalcium phosphate and poly(L,DL-lactide). Ignatius AA; Augat P; Claes LE J Biomater Sci Polym Ed; 2001; 12(2):185-94. PubMed ID: 11403235 [TBL] [Abstract][Full Text] [Related]
32. Maxillary and mandibular osteosyntheses with PLGA and P(L/DL)LA implants: a 5-year inpatient biocompatibility and degradation experience. Landes CA; Ballon A; Roth C Plast Reconstr Surg; 2006 Jun; 117(7):2347-60. PubMed ID: 16772941 [TBL] [Abstract][Full Text] [Related]
33. [In vivo study of degradation of poly-(D,L-) lactide and poly-(L-lactide-co-glycolide) osteosynthesis material]. Heidemann W; Fischer JH; Koebke J; Bussmann C; Gerlach KL Mund Kiefer Gesichtschir; 2003 Sep; 7(5):283-8. PubMed ID: 14551804 [TBL] [Abstract][Full Text] [Related]
34. Tissue restoration after resorption of polyglycolide and poly-laevo-lactic acid screws. Böstman OM; Laitinen OM; Tynninen O; Salminen ST; Pihlajamäki HK J Bone Joint Surg Br; 2005 Nov; 87(11):1575-80. PubMed ID: 16260683 [TBL] [Abstract][Full Text] [Related]
35. Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo. Heidemann W; Jeschkeit S; Ruffieux K; Fischer JH; Wagner M; Krüger G; Wintermantel E; Gerlach KL Biomaterials; 2001 Sep; 22(17):2371-81. PubMed ID: 11511034 [TBL] [Abstract][Full Text] [Related]
36. Bioabsorbable osteosynthetic implants of ultra high strength poly-L-lactide. A clinical study. Yamamuro T; Matsusue Y; Uchida A; Shimada K; Shimozaki E; Kitaoka K Int Orthop; 1994; 18(6):332-40. PubMed ID: 7698862 [TBL] [Abstract][Full Text] [Related]
37. [Local liberation of IGF-I and TGF-beta 1 from a biodegradable poly(D,L-lactide) coating of implants accelerates fracture healing]. Schmidmaier G; Wildemann B; Bail H; Lucke M; Stemberger A; Flyvbjerg A; Raschke M Chirurg; 2000 Sep; 71(9):1016-22. PubMed ID: 11043118 [TBL] [Abstract][Full Text] [Related]
38. Tissue response to polyglycolide and polylactide pins in cancellous bone. Nordström P; Pihlajamäki H; Toivonen T; Törmälä P; Rokkanen P Arch Orthop Trauma Surg; 1998; 117(4-5):197-204. PubMed ID: 9581244 [TBL] [Abstract][Full Text] [Related]
39. [Semirigid plate osteosyntheses using absorbable polymers as temporary implants. II. Animal experiment studies]. Eitenmüller J; Gerlach KL; Schmickal T; Muhr G Chirurg; 1987 Dec; 58(12):831-9. PubMed ID: 3325240 [TBL] [Abstract][Full Text] [Related]
40. Redisplacement after ankle osteosynthesis with absorbable implants. Pelto-Vasenius K; Hirvensalo E; Vasenius J; Partio EK; Böstman O; Rokkanen P Arch Orthop Trauma Surg; 1998; 117(3):159-62. PubMed ID: 9521522 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]