BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7710634)

  • 1. Tyrosinase-mediated cytotoxicity of 4-substituted phenols: quantitative structure-thiol-reactivity relationships of the derived o-quinones.
    Cooksey CJ; Land EJ; Ramsden CA; Riley PA
    Anticancer Drug Des; 1995 Mar; 10(2):119-29. PubMed ID: 7710634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of orthoquinones involved in tyrosinase-dependent cytotoxicity: differences between alkylthio- and alkoxy-substituents.
    Cooksey CJ; Jimbow K; Land EJ; Riley PA
    Melanoma Res; 1992 Dec; 2(5-6):283-93. PubMed ID: 1337996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanogenesis-targeted anti-melanoma pro-drug development: effect of side-chain variations on the cytotoxicity of tyrosinase-generated ortho-quinones in a model screening system.
    Riley PA; Cooksey CJ; Johnson CI; Land EJ; Latter AM; Ramsden CA
    Eur J Cancer; 1997 Jan; 33(1):135-43. PubMed ID: 9071913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinone chemistry and melanogenesis.
    Land EJ; Ramsden CA; Riley PA
    Methods Enzymol; 2004; 378():88-109. PubMed ID: 15038959
    [No Abstract]   [Full Text] [Related]  

  • 6. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study.
    Selassie CD; Kapur S; Verma RP; Rosario M
    J Med Chem; 2005 Nov; 48(23):7234-42. PubMed ID: 16279782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds.
    Nishimaki-Mogami T; Ito S; Cui H; Akiyama T; Tamehiro N; Adachi R; Wakamatsu K; Ikarashi Y; Kondo K
    J Dermatol Sci; 2022 Nov; 108(2):77-86. PubMed ID: 36567223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indolequinone antitumor agents: correlation between quinone structure, rate of metabolism by recombinant human NAD(P)H:quinone oxidoreductase, and in vitro cytotoxicity.
    Beall HD; Winski S; Swann E; Hudnott AR; Cotterill AS; O'Sullivan N; Green SJ; Bien R; Siegel D; Ross D; Moody CJ
    J Med Chem; 1998 Nov; 41(24):4755-66. PubMed ID: 9822546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationships defining the cytotoxicity of catechol analogues against human malignant melanoma.
    Kern DH; Shoemaker RH; Hildebrand-Zanki SU; Driscoll JS
    Cancer Res; 1988 Sep; 48(18):5178-82. PubMed ID: 3136917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of in vitro cytotoxicity of N-acetyl and N-propionyl derivatives of phenolic thioether amines in melanoma and neuroblastoma cells and the relationship to tyrosinase and tyrosine hydroxylase enzyme activity.
    Gili A; Thomas PD; Ota M; Jimbow K
    Melanoma Res; 2000 Feb; 10(1):9-15. PubMed ID: 10711635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and antimelanoma activity of sterically congested tertiary amide analogues of N-acetyl-4-S-cysteaminylphenol.
    Ferguson J; Rogers PM; Kelland LR; Robins DJ
    Oncol Res; 2005; 15(2):87-94. PubMed ID: 16119006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism.
    Muñoz-Muñoz JL; García-Molina F; García-Ruiz PA; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    Biochem J; 2008 Dec; 416(3):431-40. PubMed ID: 18647136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosinase autoactivation and the chemistry of ortho-quinone amines.
    Land EJ; Ramsden CA; Riley PA
    Acc Chem Res; 2003 May; 36(5):300-8. PubMed ID: 12755639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system.
    Yamazaki S; Itoh S
    J Am Chem Soc; 2003 Oct; 125(43):13034-5. PubMed ID: 14570470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycyclic aromatic hydrocarbon (PAH) ortho-quinone conjugate chemistry: kinetics of thiol addition to PAH ortho-quinones and structures of thioether adducts of naphthalene-1,2-dione.
    Murty VS; Penning TM
    Chem Biol Interact; 1992 Sep; 84(2):169-88. PubMed ID: 1394622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, cytotoxicity, and QSAR analysis of X-thiophenols in rapidly dividing cells.
    Verma RP; Kapur S; Barberena O; Shusterman A; Hansch CH; Selassie CD
    Chem Res Toxicol; 2003 Mar; 16(3):276-84. PubMed ID: 12641427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spectrophotometric method for the quantification of an enzyme activity producing 4-substituted phenols: determination of toluene-4-monooxygenase activity.
    Nolan LC; O'Connor KE
    Anal Biochem; 2005 Sep; 344(2):224-31. PubMed ID: 16061193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.