BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7710698)

  • 1. Enzymatic peptide synthesis in frozen aqueous systems: influence of modified reaction conditions on the peptide yield.
    Gerisch S; Ullmann G; Stubenrauch K; Jakubke HD
    Biol Chem Hoppe Seyler; 1994 Dec; 375(12):825-8. PubMed ID: 7710698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease-catalyzed peptide synthesis in frozen aqueous systems: the "freeze-concentration model".
    Schuster M; Aaviksaar A; Haga M; Ullmann U; Jakubke HD
    Biomed Biochim Acta; 1991; 50(10-11):S84-9. PubMed ID: 1820066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems.
    Tsuchiyama S; Doukyu N; Yasuda M; Ishimi K; Ogino H
    Biotechnol Prog; 2007; 23(4):820-3. PubMed ID: 17480054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonconventional protease catalysis in frozen aqueous solutions.
    Hänsler M; Jakubke HD
    J Pept Sci; 1996; 2(5):279-89. PubMed ID: 9230456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse catalysis of elastase from porcine pancreas in frozen aqueous systems.
    Haensler M; Wehofsky N; Gerisch S; Wissmann JD; Jakubke HD
    Biol Chem; 1998 Jan; 379(1):71-4. PubMed ID: 9504720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of the suzuki-miyaura cross-coupling reaction for solid-phase peptide modification.
    Doan ND; Bourgault S; Létourneau M; Fournier A
    J Comb Chem; 2008; 10(1):44-51. PubMed ID: 18067269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gram-scale enzymatic synthesis of a peptide bond.
    Deschrevel B; Dugast JY; Vincent JC
    C R Acad Sci III; 1992; 314(11):519-25. PubMed ID: 1521172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization-stabilization of proteases as a tool to improve the industrial design of peptide synthesis.
    Blanco RM; Bastida A; Cuesta C; Alvaro G; Fernandez-Lafuente R; Rosell CM; Guisan JM
    Biomed Biochim Acta; 1991; 50(10-11):S110-3. PubMed ID: 1820029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of chymotrypsin modified with water-soluble acylating reagents and its peptide synthesis ability in aqueous organic media.
    Kawasaki Y; Murakami M; Dosako S; Azuse I; Nakamura T; Okai H
    Biosci Biotechnol Biochem; 1992 Mar; 56(3):441-4. PubMed ID: 1368328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic peptide synthesis in frozen aqueous solution: use of N alpha-unprotected peptide esters as acyl donors.
    Gerisch S; Jakubke HD
    J Pept Sci; 1997; 3(2):93-8. PubMed ID: 9230474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methods for thermolysin-catalyzed peptide synthesis including a novel more active catalyst.
    Ulijn RV; Erbeldinger M; Halling PJ
    Biotechnol Bioeng; 2000 Sep; 69(6):633-8. PubMed ID: 10918138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.
    Hu SH; Kuo CH; Chang CM; Liu YC; Chiang WD; Shieh CJ
    Biotechnol Prog; 2012; 28(6):1443-9. PubMed ID: 22915508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic properties of alpha-chymotrypsin in organic media.
    Adlercreutz P; Clapés P
    Biomed Biochim Acta; 1991; 50(10-11):S55-60. PubMed ID: 1820061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total enzymatic synthesis of cholecystokinin CCK-5.
    Xiang H; Xiang GY; Lu ZM; Guo L; Eckstein H
    Amino Acids; 2004 Aug; 27(1):101-5. PubMed ID: 15309578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of papain, ficin and clostripain in kinetically controlled peptide synthesis in frozen aqueous solutions.
    Hänsler M; Ullmann G; Jakubke HD
    J Pept Sci; 1995; 1(5):283-7. PubMed ID: 9223006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared studies of small azobenzene peptides: unexpectedly slow reactions on the time range of minutes.
    Koller FO; Reho R; Schrader TE; Moroder L; Wachtveitl J; Zinth W
    J Phys Chem B; 2007 Sep; 111(35):10481-6. PubMed ID: 17691720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic peptide synthesis in organic media: a comparative study of water-miscible and water-immiscible solvent systems.
    Clapés P; Adlercreutz P; Mattiasson B
    J Biotechnol; 1990 Sep; 15(4):323-38. PubMed ID: 1366830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic formation of Glu-Xaa and Asp-Xaa bonds using Glu/Asp-specific endopeptidase from Bacillus licheniformis in frozen aqueous systems.
    Haensler M; Wissmann HD; Wehofsky N
    J Pept Sci; 2000 Aug; 6(8):366-71. PubMed ID: 10969865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chymotrypsin-catalyzed peptide synthesis. Kinetic analysis of the kinetically controlled peptide-bond formation.
    Bizzozero SA; Dutler H; Rückert P
    Int J Pept Protein Res; 1988 Jul; 32(1):64-73. PubMed ID: 3220656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effect of freezing on protease-catalyzed peptide synthesis using cryoprotectants and frozen organic solvent.
    Haensler M; Arnold K
    Biol Chem; 2000 Jan; 381(1):79-83. PubMed ID: 10722054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.