These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7710698)

  • 1. Enzymatic peptide synthesis in frozen aqueous systems: influence of modified reaction conditions on the peptide yield.
    Gerisch S; Ullmann G; Stubenrauch K; Jakubke HD
    Biol Chem Hoppe Seyler; 1994 Dec; 375(12):825-8. PubMed ID: 7710698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease-catalyzed peptide synthesis in frozen aqueous systems: the "freeze-concentration model".
    Schuster M; Aaviksaar A; Haga M; Ullmann U; Jakubke HD
    Biomed Biochim Acta; 1991; 50(10-11):S84-9. PubMed ID: 1820066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems.
    Tsuchiyama S; Doukyu N; Yasuda M; Ishimi K; Ogino H
    Biotechnol Prog; 2007; 23(4):820-3. PubMed ID: 17480054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonconventional protease catalysis in frozen aqueous solutions.
    Hänsler M; Jakubke HD
    J Pept Sci; 1996; 2(5):279-89. PubMed ID: 9230456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reverse catalysis of elastase from porcine pancreas in frozen aqueous systems.
    Haensler M; Wehofsky N; Gerisch S; Wissmann JD; Jakubke HD
    Biol Chem; 1998 Jan; 379(1):71-4. PubMed ID: 9504720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of the suzuki-miyaura cross-coupling reaction for solid-phase peptide modification.
    Doan ND; Bourgault S; Létourneau M; Fournier A
    J Comb Chem; 2008; 10(1):44-51. PubMed ID: 18067269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gram-scale enzymatic synthesis of a peptide bond.
    Deschrevel B; Dugast JY; Vincent JC
    C R Acad Sci III; 1992; 314(11):519-25. PubMed ID: 1521172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization-stabilization of proteases as a tool to improve the industrial design of peptide synthesis.
    Blanco RM; Bastida A; Cuesta C; Alvaro G; Fernandez-Lafuente R; Rosell CM; Guisan JM
    Biomed Biochim Acta; 1991; 50(10-11):S110-3. PubMed ID: 1820029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of chymotrypsin modified with water-soluble acylating reagents and its peptide synthesis ability in aqueous organic media.
    Kawasaki Y; Murakami M; Dosako S; Azuse I; Nakamura T; Okai H
    Biosci Biotechnol Biochem; 1992 Mar; 56(3):441-4. PubMed ID: 1368328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic peptide synthesis in frozen aqueous solution: use of N alpha-unprotected peptide esters as acyl donors.
    Gerisch S; Jakubke HD
    J Pept Sci; 1997; 3(2):93-8. PubMed ID: 9230474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methods for thermolysin-catalyzed peptide synthesis including a novel more active catalyst.
    Ulijn RV; Erbeldinger M; Halling PJ
    Biotechnol Bioeng; 2000 Sep; 69(6):633-8. PubMed ID: 10918138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.
    Hu SH; Kuo CH; Chang CM; Liu YC; Chiang WD; Shieh CJ
    Biotechnol Prog; 2012; 28(6):1443-9. PubMed ID: 22915508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic properties of alpha-chymotrypsin in organic media.
    Adlercreutz P; Clapés P
    Biomed Biochim Acta; 1991; 50(10-11):S55-60. PubMed ID: 1820061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total enzymatic synthesis of cholecystokinin CCK-5.
    Xiang H; Xiang GY; Lu ZM; Guo L; Eckstein H
    Amino Acids; 2004 Aug; 27(1):101-5. PubMed ID: 15309578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of papain, ficin and clostripain in kinetically controlled peptide synthesis in frozen aqueous solutions.
    Hänsler M; Ullmann G; Jakubke HD
    J Pept Sci; 1995; 1(5):283-7. PubMed ID: 9223006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared studies of small azobenzene peptides: unexpectedly slow reactions on the time range of minutes.
    Koller FO; Reho R; Schrader TE; Moroder L; Wachtveitl J; Zinth W
    J Phys Chem B; 2007 Sep; 111(35):10481-6. PubMed ID: 17691720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic peptide synthesis in organic media: a comparative study of water-miscible and water-immiscible solvent systems.
    Clapés P; Adlercreutz P; Mattiasson B
    J Biotechnol; 1990 Sep; 15(4):323-38. PubMed ID: 1366830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic formation of Glu-Xaa and Asp-Xaa bonds using Glu/Asp-specific endopeptidase from Bacillus licheniformis in frozen aqueous systems.
    Haensler M; Wissmann HD; Wehofsky N
    J Pept Sci; 2000 Aug; 6(8):366-71. PubMed ID: 10969865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chymotrypsin-catalyzed peptide synthesis. Kinetic analysis of the kinetically controlled peptide-bond formation.
    Bizzozero SA; Dutler H; Rückert P
    Int J Pept Protein Res; 1988 Jul; 32(1):64-73. PubMed ID: 3220656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effect of freezing on protease-catalyzed peptide synthesis using cryoprotectants and frozen organic solvent.
    Haensler M; Arnold K
    Biol Chem; 2000 Jan; 381(1):79-83. PubMed ID: 10722054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.