These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 7711060)
21. Expression and characterization of HSPC129, a RNA polymerase II C-terminal domain phosphatase. Qian H; Ji C; Zhao S; Chen J; Jiang M; Zhang Y; Yan M; Zheng D; Sun Y; Xie Y; Mao Y Mol Cell Biochem; 2007 Sep; 303(1-2):183-8. PubMed ID: 17487459 [TBL] [Abstract][Full Text] [Related]
22. Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Liu P; Kenney JM; Stiller JW; Greenleaf AL Mol Biol Evol; 2010 Nov; 27(11):2628-41. PubMed ID: 20558594 [TBL] [Abstract][Full Text] [Related]
23. Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B. Ni Z; Olsen JB; Guo X; Zhong G; Ruan ED; Marcon E; Young P; Guo H; Li J; Moffat J; Emili A; Greenblatt JF Transcription; 2011; 2(5):237-42. PubMed ID: 22231121 [TBL] [Abstract][Full Text] [Related]
24. High-resolution protein-DNA contacts for the yeast RNA polymerase II general transcription machinery. Chen BS; Mandal SS; Hampsey M Biochemistry; 2004 Oct; 43(40):12741-9. PubMed ID: 15461446 [TBL] [Abstract][Full Text] [Related]
25. Phosphorylation state of the RNA polymerase II C-terminal domain (CTD) in heat-shocked cells. Possible involvement of the stress-activated mitogen-activated protein (MAP) kinases. Venetianer A; Dubois MF; Nguyen VT; Bellier S; Seo SJ; Bensaude O Eur J Biochem; 1995 Oct; 233(1):83-92. PubMed ID: 7588777 [TBL] [Abstract][Full Text] [Related]
26. The non-canonical CTD of RNAP-II is essential for productive RNA synthesis in Trypanosoma brucei. Das A; Bellofatto V PLoS One; 2009 Sep; 4(9):e6959. PubMed ID: 19742309 [TBL] [Abstract][Full Text] [Related]
27. Enhanced phosphorylation of the C-terminal domain of RNA polymerase II upon serum stimulation of quiescent cells: possible involvement of MAP kinases. Dubois MF; Nguyen VT; Dahmus ME; Pagès G; Pouysségur J; Bensaude O EMBO J; 1994 Oct; 13(20):4787-97. PubMed ID: 7957047 [TBL] [Abstract][Full Text] [Related]
28. TFIIF-associating carboxyl-terminal domain phosphatase dephosphorylates phosphoserines 2 and 5 of RNA polymerase II. Lin PS; Dubois MF; Dahmus ME J Biol Chem; 2002 Nov; 277(48):45949-56. PubMed ID: 12351650 [TBL] [Abstract][Full Text] [Related]
29. Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. Chambers RS; Dahmus ME J Biol Chem; 1994 Oct; 269(42):26243-8. PubMed ID: 7929341 [TBL] [Abstract][Full Text] [Related]
30. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. Dai-Ju JQ; Li L; Johnson LA; Sandri-Goldin RM J Virol; 2006 Apr; 80(7):3567-81. PubMed ID: 16537625 [TBL] [Abstract][Full Text] [Related]
31. Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation. Baskaran R; Escobar SR; Wang JY Cell Growth Differ; 1999 Jun; 10(6):387-96. PubMed ID: 10392900 [TBL] [Abstract][Full Text] [Related]
32. The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation. Liu P; Greenleaf AL; Stiller JW Mol Biol Evol; 2008 Apr; 25(4):719-27. PubMed ID: 18209193 [TBL] [Abstract][Full Text] [Related]
33. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. Chesnut JD; Stephens JH; Dahmus ME J Biol Chem; 1992 May; 267(15):10500-6. PubMed ID: 1316903 [TBL] [Abstract][Full Text] [Related]
34. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation. Yamamoto S; Watanabe Y; van der Spek PJ; Watanabe T; Fujimoto H; Hanaoka F; Ohkuma Y Mol Cell Biol; 2001 Jan; 21(1):1-15. PubMed ID: 11113176 [TBL] [Abstract][Full Text] [Related]
35. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II. Fraser KA; Rice SA J Virol; 2005 Sep; 79(17):11323-34. PubMed ID: 16103184 [TBL] [Abstract][Full Text] [Related]
36. Pin1 modulates the structure and function of human RNA polymerase II. Xu YX; Hirose Y; Zhou XZ; Lu KP; Manley JL Genes Dev; 2003 Nov; 17(22):2765-76. PubMed ID: 14600023 [TBL] [Abstract][Full Text] [Related]
37. C-terminal domain phosphatase sensitivity of RNA polymerase II in early elongation complexes on the HIV-1 and adenovirus 2 major late templates. Marshall NF; Dahmus ME J Biol Chem; 2000 Oct; 275(42):32430-7. PubMed ID: 10938286 [TBL] [Abstract][Full Text] [Related]
38. Promoter-dependent phosphorylation of RNA polymerase II by a template-bound kinase. Association with transcriptional initiation. Arias JA; Peterson SR; Dynan WS J Biol Chem; 1991 May; 266(13):8055-61. PubMed ID: 1708770 [TBL] [Abstract][Full Text] [Related]
39. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II. Dubois MF; Vincent M; Vigneron M; Adamczewski J; Egly JM; Bensaude O Nucleic Acids Res; 1997 Feb; 25(4):694-700. PubMed ID: 9016617 [TBL] [Abstract][Full Text] [Related]
40. Yeast Spt6 Reads Multiple Phosphorylation Patterns of RNA Polymerase II C-Terminal Domain In Vitro. Brázda P; Krejčíková M; Kasiliauskaite A; Šmiřáková E; Klumpler T; Vácha R; Kubíček K; Štefl R J Mol Biol; 2020 Jun; 432(14):4092-4107. PubMed ID: 32439331 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]