These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 7711060)
41. Pin1 modulates RNA polymerase II activity during the transcription cycle. Xu YX; Manley JL Genes Dev; 2007 Nov; 21(22):2950-62. PubMed ID: 18006688 [TBL] [Abstract][Full Text] [Related]
42. Rct1, a nuclear RNA recognition motif-containing cyclophilin, regulates phosphorylation of the RNA polymerase II C-terminal domain. Gullerova M; Barta A; Lorkovic ZJ Mol Cell Biol; 2007 May; 27(10):3601-11. PubMed ID: 17339332 [TBL] [Abstract][Full Text] [Related]
43. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Heidemann M; Hintermair C; Voß K; Eick D Biochim Biophys Acta; 2013 Jan; 1829(1):55-62. PubMed ID: 22982363 [TBL] [Abstract][Full Text] [Related]
44. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Luo Z; Zheng J; Lu Y; Bregman DB Mutat Res; 2001 Sep; 486(4):259-74. PubMed ID: 11516929 [TBL] [Abstract][Full Text] [Related]
45. Trichomonas vaginalis initiator binding protein (IBP39) and RNA polymerase II large subunit carboxy terminal domain interaction. Lau AO; Smith AJ; Brown MT; Johnson PJ Mol Biochem Parasitol; 2006 Nov; 150(1):56-62. PubMed ID: 16879883 [TBL] [Abstract][Full Text] [Related]
46. Phospho-site mutants of the RNA Polymerase II C-terminal domain alter subtelomeric gene expression and chromatin modification state in fission yeast. Inada M; Nichols RJ; Parsa JY; Homer CM; Benn RA; Hoxie RS; Madhani HD; Shuman S; Schwer B; Pleiss JA Nucleic Acids Res; 2016 Nov; 44(19):9180-9189. PubMed ID: 27402158 [TBL] [Abstract][Full Text] [Related]
47. Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos. Palancade B; Dubois MF; Dahmus ME; Bensaude O Mol Cell Biol; 2001 Oct; 21(19):6359-68. PubMed ID: 11533226 [TBL] [Abstract][Full Text] [Related]
48. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. Hirose Y; Ohkuma Y J Biochem; 2007 May; 141(5):601-8. PubMed ID: 17405796 [TBL] [Abstract][Full Text] [Related]
49. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD. Schneider S; Pei Y; Shuman S; Schwer B Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361 [TBL] [Abstract][Full Text] [Related]
51. Requirement for phosphorylation of RNA polymerase II C-terminal domain in transcription is both transcript length and promoter dependent. Song CZ Biochem Biophys Res Commun; 1996 Dec; 229(3):810-6. PubMed ID: 8954977 [TBL] [Abstract][Full Text] [Related]
52. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD. Emili A; Shales M; McCracken S; Xie W; Tucker PW; Kobayashi R; Blencowe BJ; Ingles CJ RNA; 2002 Sep; 8(9):1102-11. PubMed ID: 12358429 [TBL] [Abstract][Full Text] [Related]
53. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Li Y; Kornberg RD Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2362-6. PubMed ID: 8134400 [TBL] [Abstract][Full Text] [Related]
54. PCIF1, a novel human WW domain-containing protein, interacts with the phosphorylated RNA polymerase II. Fan H; Sakuraba K; Komuro A; Kato S; Harada F; Hirose Y Biochem Biophys Res Commun; 2003 Feb; 301(2):378-85. PubMed ID: 12565871 [TBL] [Abstract][Full Text] [Related]
55. Mechanism of assembly of the RNA polymerase II preinitiation complex. Evidence for a functional interaction between the carboxyl-terminal domain of the largest subunit of RNA polymerase II and a high molecular mass form of the TATA factor. Conaway RC; Bradsher JN; Conaway JW J Biol Chem; 1992 Apr; 267(12):8464-7. PubMed ID: 1569096 [TBL] [Abstract][Full Text] [Related]
56. The Carboxyl-terminal Domain of RNA Polymerase II Is Not Sufficient to Enhance the Efficiency of Pre-mRNA Capping or Splicing in the Context of a Different Polymerase. Natalizio BJ; Robson-Dixon ND; Garcia-Blanco MA J Biol Chem; 2009 Mar; 284(13):8692-702. PubMed ID: 19176527 [TBL] [Abstract][Full Text] [Related]
57. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. O'Brien T; Hardin S; Greenleaf A; Lis JT Nature; 1994 Jul; 370(6484):75-7. PubMed ID: 8015613 [TBL] [Abstract][Full Text] [Related]
58. The Old and New Testaments of gene regulation. Evolution of multi-subunit RNA polymerases and co-evolution of eukaryote complexity with the RNAP II CTD. Burton ZF Transcription; 2014; 5(3):e28674. PubMed ID: 25764332 [TBL] [Abstract][Full Text] [Related]
59. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. Laybourn PJ; Dahmus ME J Biol Chem; 1990 Aug; 265(22):13165-73. PubMed ID: 2376591 [TBL] [Abstract][Full Text] [Related]
60. Increased phosphorylation of the carboxyl-terminal domain of RNA polymerase II and loading of polyadenylation and cotranscriptional factors contribute to regulation of the ig heavy chain mRNA in plasma cells. Shell SA; Martincic K; Tran J; Milcarek C J Immunol; 2007 Dec; 179(11):7663-73. PubMed ID: 18025212 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]