These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 7711060)

  • 61. RNA polymerase II conducts a symphony of pre-mRNA processing activities.
    Howe KJ
    Biochim Biophys Acta; 2002 Sep; 1577(2):308-24. PubMed ID: 12213660
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transcription by RNA polymerase II and the CTD-chromatin crosstalk.
    Singh N; Asalam M; Ansari MO; Gerasimova NS; Studitsky VM; Akhtar MS
    Biochem Biophys Res Commun; 2022 Apr; 599():81-86. PubMed ID: 35176629
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced binding of RNAP II CTD phosphatase FCP1 to RAP74 following CK2 phosphorylation.
    Abbott KL; Renfrow MB; Chalmers MJ; Nguyen BD; Marshall AG; Legault P; Omichinski JG
    Biochemistry; 2005 Mar; 44(8):2732-45. PubMed ID: 15723518
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription.
    Gebara MM; Sayre MH; Corden JL
    J Cell Biochem; 1997 Mar; 64(3):390-402. PubMed ID: 9057097
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription.
    Serizawa H; Conaway JW; Conaway RC
    Nature; 1993 May; 363(6427):371-4. PubMed ID: 8497323
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inhibition of RNA polymerase II phosphorylation by a viral interferon antagonist.
    Thomas D; Blakqori G; Wagner V; Banholzer M; Kessler N; Elliott RM; Haller O; Weber F
    J Biol Chem; 2004 Jul; 279(30):31471-7. PubMed ID: 15150262
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain.
    Baskaran R; Dahmus ME; Wang JY
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11167-71. PubMed ID: 7504297
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The C-terminal domain-phosphorylated IIO form of RNA polymerase II is associated with the transcription repressor NC2 (Dr1/DRAP1) and is required for transcription activation in human nuclear extracts.
    Castaño E; Gross P; Wang Z; Roeder RG; Oelgeschläger T
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7184-9. PubMed ID: 10852970
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tyrosine-1 and threonine-4 phosphorylation marks complete the RNA polymerase II CTD phospho-code.
    Heidemann M; Eick D
    RNA Biol; 2012 Sep; 9(9):1144-6. PubMed ID: 22960391
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The RNA polymerase II general elongation complex.
    Shilatifard A
    Biol Chem; 1998 Jan; 379(1):27-31. PubMed ID: 9504713
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CTD kinase associated with yeast RNA polymerase II initiation factor b.
    Feaver WJ; Gileadi O; Li Y; Kornberg RD
    Cell; 1991 Dec; 67(6):1223-30. PubMed ID: 1836979
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The two steps of poly(A)-dependent termination, pausing and release, can be uncoupled by truncation of the RNA polymerase II carboxyl-terminal repeat domain.
    Park NJ; Tsao DC; Martinson HG
    Mol Cell Biol; 2004 May; 24(10):4092-103. PubMed ID: 15121832
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II.
    Venkat Ramani MK; Yang W; Irani S; Zhang Y
    J Mol Biol; 2021 Jul; 433(14):166912. PubMed ID: 33676925
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Purification and characterization of an RNA polymerase II phosphatase from yeast.
    Chambers RS; Kane CM
    J Biol Chem; 1996 Oct; 271(40):24498-504. PubMed ID: 8798710
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling.
    Rosonina E; Yurko N; Li W; Hoque M; Tian B; Manley JL
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):11924-31. PubMed ID: 25071213
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Progression through the RNA polymerase II CTD cycle.
    Buratowski S
    Mol Cell; 2009 Nov; 36(4):541-6. PubMed ID: 19941815
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cracking the RNA polymerase II CTD code.
    Egloff S; Murphy S
    Trends Genet; 2008 Jun; 24(6):280-8. PubMed ID: 18457900
    [TBL] [Abstract][Full Text] [Related]  

  • 79. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells.
    Hsin JP; Li W; Hoque M; Tian B; Manley JL
    Elife; 2014 May; 3():e02112. PubMed ID: 24842995
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inhibitors of transcription such as 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole and isoquinoline sulfonamide derivatives (H-8 and H-7) promote dephosphorylation of the carboxyl-terminal domain of RNA polymerase II largest subunit.
    Dubois MF; Nguyen VT; Bellier S; Bensaude O
    J Biol Chem; 1994 May; 269(18):13331-6. PubMed ID: 7513701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.