BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7711231)

  • 1. The F0 complex of the ATP synthase of Escherichia coli contains a proton pathway with large proton polarizability caused by collective proton fluctuation.
    Bartl F; Deckers-Hebestreit G; Altendorf K; Zundel G
    Biophys J; 1995 Jan; 68(1):104-10. PubMed ID: 7711231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton relay system in the active site of maltodextrinphosphorylase via hydrogen bonds with large proton polarizability: an FT-IR difference spectroscopy study.
    Bartl F; Palm D; Schinzel R; Zundel G
    Eur Biophys J; 1999; 28(3):200-7. PubMed ID: 10232933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H+ transport and coupling by the F0 sector of the ATP synthase: insights into the molecular mechanism of function.
    Fillingame RH
    J Bioenerg Biomembr; 1992 Oct; 24(5):485-91. PubMed ID: 1331039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional His-tagged c subunit of the Escherichia coli F-type ATPase/Synthase.
    Tomashek JJ; Poposki JA; Brusilow WS
    Arch Biochem Biophys; 2001 Mar; 387(2):180-7. PubMed ID: 11370839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model molecule of the hydrogen-bonded chain in the active site of bacteriorhodopsin.
    Brzezinski B; Urjasz H; Zundel G
    Biochem Biophys Res Commun; 1996 Feb; 219(1):273-6. PubMed ID: 8619821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. F0 part of the ATP synthase from Escherichia coli. Influence of subunits a, and b, on the structure of subunit c.
    Steffens K; Hoppe J; Altendorf K
    Eur J Biochem; 1988 Jan; 170(3):627-30. PubMed ID: 2892677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP synthase (F1F0).
    Schneider E; Altendorf K
    EMBO J; 1985 Feb; 4(2):515-8. PubMed ID: 2410260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model molecules for the active centre of alcoholdehydrogenases--an FT-IR study.
    Brzezinski B; Urjasz H; Zundel G; Bartl F
    Biochem Biophys Res Commun; 1997 Feb; 231(2):473-6. PubMed ID: 9070303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of arginine-glutamic acid ion pair in the ATP hydrolysis.
    Carmona P; Molina M; Rodríguez-Casado A
    Biophys Chem; 2006 Jan; 119(1):33-7. PubMed ID: 16182434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TFPACD, a novel bifunctional reagent for reacting with DCCD sites in proteins: studies using Escherichia coli ATP synthase.
    Phadke AS; Aggeler R; Keana JF; Capaldi RA
    Biochem Biophys Res Commun; 1994 Jun; 201(2):635-41. PubMed ID: 8002996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the F0 portion of the H+-translocating adenosinetriphosphatase complex of Escherichia coli by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and effect on the proton channeling function.
    Lötscher HR; deJong C; Capaldi RA
    Biochemistry; 1984 Aug; 23(18):4128-34. PubMed ID: 6237682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-conducting portion (F0) from Escherichia coli ATP synthase: preparation, dissociation into subunits, and reconstitution of an active complex.
    Schneider E; Altendorf K
    Methods Enzymol; 1986; 126():569-78. PubMed ID: 2908466
    [No Abstract]   [Full Text] [Related]  

  • 13. Modification of subunit b of the F0 complex from Escherichia coli ATP synthase by a hydrophobic maleimide and its effects on F0 functions.
    Schneider E; Altendorf K
    Eur J Biochem; 1985 Nov; 153(1):105-9. PubMed ID: 2866095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological studies suggest that the pathway of the protons through F0 is provided by amino acid residues accessible from the lipid phase.
    Hoppe J; Sebald W
    Biochimie; 1986 Mar; 68(3):427-34. PubMed ID: 2874840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Systems of H+-K+-exchange in E. coli. Interplay with ATPase complex F1.F0].
    Martirosov SM; Trchunian AA
    Biofizika; 1981; 26(6):1033-6. PubMed ID: 6459129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transduction in ATP synthase.
    Elston T; Wang H; Oster G
    Nature; 1998 Jan; 391(6666):510-3. PubMed ID: 9461222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural changes linked to proton translocation by subunit c of the ATP synthase.
    Rastogi VK; Girvin ME
    Nature; 1999 Nov; 402(6759):263-8. PubMed ID: 10580496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy.
    Birkenhäger R; Hoppert M; Deckers-Hebestreit G; Mayer F; Altendorf K
    Eur J Biochem; 1995 May; 230(1):58-67. PubMed ID: 7601125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [H+-K+-exchange and formation of H2 in E. coli mutants with defects in the H+-ATPase complex and potassium transport].
    Bagramian KA; Trchunian AA
    Biofizika; 1993; 38(4):678-83. PubMed ID: 8364070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.
    Gasanov SE; Kim AA; Yaguzhinsky LS; Dagda RK
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):586-599. PubMed ID: 29179995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.