BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7711265)

  • 21. The role of sarcoplasmic reticulum and Na-Ca exchange in the Ca2+ extrusion from the resting myocytes of guinea-pig heart: comparison with rat.
    Wolska BM; Lewartowski B
    J Mol Cell Cardiol; 1993 Jan; 25(1):75-91. PubMed ID: 8441183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle.
    Szentesi P; Pignier C; Egger M; Kranias EG; Niggli E
    Circ Res; 2004 Oct; 95(8):807-13. PubMed ID: 15388639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement and modeling of Ca2+ waves in isolated rabbit ventricular cardiomyocytes.
    MacQuaide N; Dempster J; Smith GL
    Biophys J; 2007 Oct; 93(7):2581-95. PubMed ID: 17545234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of luminal calcium on Ca2+ release channel activity of sarcoplasmic reticulum in situ.
    Kurebayashi N; Ogawa Y
    Biophys J; 1998 Apr; 74(4):1795-807. PubMed ID: 9545042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mathematical model of cardiocyte Ca(2+) dynamics with a novel representation of sarcoplasmic reticular Ca(2+) control.
    Snyder SM; Palmer BM; Moore RL
    Biophys J; 2000 Jul; 79(1):94-115. PubMed ID: 10866940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous calcium waves without contraction in cardiac myocytes.
    López JR; Jovanovic A; Terzic A
    Biochem Biophys Res Commun; 1995 Sep; 214(3):781-7. PubMed ID: 7575544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular free Ca2+ movements in cultured cardiac myocytes as shown by rapid scanning confocal microscopy.
    Tanaka H; Kawanishi T; Matsuda T; Takahashi M; Shigenobu K
    J Cardiovasc Pharmacol; 1996 Jun; 27(6):761-9. PubMed ID: 8761841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of planar and spiral Ca2+ waves in isolated cardiac myocytes.
    Ishida H; Genka C; Hirota Y; Nakazawa H; Barry WH
    Biophys J; 1999 Oct; 77(4):2114-22. PubMed ID: 10512831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrasarcomere [Ca2+] gradients and their spatio-temporal relation to Ca2+ sparks in rat cardiomyocytes.
    Tanaka H; Sekine T; Kawanishi T; Nakamura R; Shigenobu K
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):145-52. PubMed ID: 9490830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of basal [Ca2+]i on calcium handling in Ca(2+)-overloaded rat cultured heart muscle cells.
    Takahashi A; Takamatsu T
    Cell Signal; 1997 Dec; 9(8):617-25. PubMed ID: 9429766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature affects human cardiac sarcoplasmic reticulum energy-mediated calcium transport.
    Labow RS; Hendry PJ; Meek E; Keon WJ
    J Mol Cell Cardiol; 1993 Oct; 25(10):1161-70. PubMed ID: 8263950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in the relative occupancy of metal-binding sites in the profile structure of the sarcoplasmic reticulum membrane induced by phosphorylation of the Ca2+ATPase enzyme in the presence of terbium: a time-resolved, resonance x-ray diffraction study.
    Asturias FJ; Fischetti RF; Blasie JK
    Biophys J; 1994 May; 66(5):1665-77. PubMed ID: 8061215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of agonist-induced Ca2+ release by SR Ca2+ load: direct SR and cytosolic Ca2+ measurements in rat uterine myocytes.
    Shmygol A; Wray S
    Cell Calcium; 2005 Mar; 37(3):215-23. PubMed ID: 15670868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice.
    Kadambi VJ; Ponniah S; Harrer JM; Hoit BD; Dorn GW; Walsh RA; Kranias EG
    J Clin Invest; 1996 Jan; 97(2):533-9. PubMed ID: 8567978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of sarcomere mechanics and Ca2+ overload in Ca2+ waves and arrhythmias in rat cardiac muscle.
    ter Keurs HE; Wakayama Y; Sugai Y; Price G; Kagaya Y; Boyden PA; Miura M; Stuyvers BD
    Ann N Y Acad Sci; 2006 Oct; 1080():248-67. PubMed ID: 17132788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitation-dependent intracellular Ca2+ waves at the border zone of the cryo-injured rat heart revealed by real-time confocal microscopy.
    Tanaka H; Oyamada M; Tsujii E; Nakajo T; Takamatsu T
    J Mol Cell Cardiol; 2002 Nov; 34(11):1501-12. PubMed ID: 12431449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contractile activity and fluorescence changes in fluo-3-loaded isolated ventricular myocytes.
    Suetake I; Takisawa H; Nakamura T
    Jpn J Physiol; 1992; 42(5):815-21. PubMed ID: 1491505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ visualization of spontaneous calcium waves within perfused whole rat heart by confocal imaging.
    Minamikawa T; Cody SH; Williams DA
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H236-43. PubMed ID: 9038943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcium waves in mammalian heart: quantification of origin, magnitude, waveform, and velocity.
    Takamatsu T; Wier WG
    FASEB J; 1990 Mar; 4(5):1519-25. PubMed ID: 2307330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium waves in agarose gel with cell organelles: implications of the velocity curvature relationship.
    Wussling MH; Krannich K; Drygalla V; Podhaisky H
    Biophys J; 2001 Jun; 80(6):2658-66. PubMed ID: 11371442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.