These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7711953)
41. Extraction and purification of microbial DNA from petroleum-contaminated soils and detection of low numbers of toluene, octane and pesticide degraders by multiplex polymerase chain reaction and Southern analysis. Knaebel DB; Crawford RL Mol Ecol; 1995 Oct; 4(5):579-91. PubMed ID: 7582166 [TBL] [Abstract][Full Text] [Related]
42. Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Newby DT; Gentry TJ; Pepper IL Appl Environ Microbiol; 2000 Aug; 66(8):3399-407. PubMed ID: 10919798 [TBL] [Abstract][Full Text] [Related]
44. Genetic and molecular analysis of a regulatory region of the herbicide 2,4-dichlorophenoxyacetate catabolic plasmid pJP4. You IS; Ghosal D Mol Microbiol; 1995 Apr; 16(2):321-31. PubMed ID: 7565094 [TBL] [Abstract][Full Text] [Related]
45. Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. Baelum J; Nicolaisen MH; Holben WE; Strobel BW; Sørensen J; Jacobsen CS ISME J; 2008 Jun; 2(6):677-87. PubMed ID: 18356824 [TBL] [Abstract][Full Text] [Related]
46. (R,S)-dichlorprop herbicide in agricultural soil induces proliferation and expression of multiple dioxygenase-encoding genes in the indigenous microbial community. Paulin MM; Nicolaisen MH; Sørensen J Environ Microbiol; 2011 Jun; 13(6):1513-23. PubMed ID: 21418495 [TBL] [Abstract][Full Text] [Related]
47. Polymerase chain reaction and gene probe detection of the 2,4-dichlorophenoxyacetic acid degradation plasmid, pJP4. Neilson JW; Josephson KL; Pillai SD; Pepper IL Appl Environ Microbiol; 1992 Apr; 58(4):1271-5. PubMed ID: 1599246 [TBL] [Abstract][Full Text] [Related]
48. Impact of fumigants on soil microbial communities. Ibekwe AM; Papiernik SK; Gan J; Yates SR; Yang CH; Crowley DE Appl Environ Microbiol; 2001 Jul; 67(7):3245-57. PubMed ID: 11425748 [TBL] [Abstract][Full Text] [Related]
49. Radiation-induced impacts on the degradation of 2,4-D and the microbial population in soil microcosms. Niedrée B; Vereecken H; Burauel P J Environ Radioact; 2013 Jan; 115():168-74. PubMed ID: 22975652 [TBL] [Abstract][Full Text] [Related]
50. Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Daane LL; Häggblom MM Appl Environ Microbiol; 1999 Jun; 65(6):2376-81. PubMed ID: 10347016 [TBL] [Abstract][Full Text] [Related]
51. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263 [TBL] [Abstract][Full Text] [Related]
52. Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Chatzinotas A; Sandaa RA; Schönhuber W; Amann R; Daae FL; Torsvik V; Zeyer J; Hahn D Syst Appl Microbiol; 1998 Dec; 21(4):579-87. PubMed ID: 9924826 [TBL] [Abstract][Full Text] [Related]
53. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Dennis P; Edwards EA; Liss SN; Fulthorpe R Appl Environ Microbiol; 2003 Feb; 69(2):769-78. PubMed ID: 12570994 [TBL] [Abstract][Full Text] [Related]
54. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation. Chikere CB; Surridge K; Okpokwasili GC; Cloete TE Waste Manag Res; 2012 Mar; 30(3):225-36. PubMed ID: 21824988 [TBL] [Abstract][Full Text] [Related]
55. Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. Ka JO; Tiedje JM J Bacteriol; 1994 Sep; 176(17):5284-9. PubMed ID: 8071203 [TBL] [Abstract][Full Text] [Related]
56. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils. Gill AS; Lee A; McGuire KL Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28576763 [TBL] [Abstract][Full Text] [Related]
57. Bio-Augmentation of Cupriavidus sp. CY-1 into 2,4-D Contaminated Soil: Microbial Community Analysis by Culture Dependent and Independent Techniques. Chang YC; Reddy MV; Umemoto H; Sato Y; Kang MH; Yajima Y; Kikuchi S PLoS One; 2015; 10(12):e0145057. PubMed ID: 26710231 [TBL] [Abstract][Full Text] [Related]
58. Profiling microbial community structures across six large oilfields in China and the potential role of dominant microorganisms in bioremediation. Sun W; Li J; Jiang L; Sun Z; Fu M; Peng X Appl Microbiol Biotechnol; 2015 Oct; 99(20):8751-64. PubMed ID: 26078113 [TBL] [Abstract][Full Text] [Related]
59. Do conventionally and biologically cultivated soils differ in bacterial diversity and community structure? Seghers D; Reheul D; Bulcke R; Verstraete W; Top EM Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):381-8. PubMed ID: 15954622 [TBL] [Abstract][Full Text] [Related]
60. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem. Wang Y; Hatt JK; Tsementzi D; Rodriguez-R LM; Ruiz-Pérez CA; Weigand MR; Kizer H; Maresca G; Krishnan R; Poretsky R; Spain JC; Konstantinidis KT Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28258138 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]