These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7712160)

  • 1. Effect of neuropeptide-Y on tectal field potentials in the toad.
    Schwippert WW; Ewert JP
    Brain Res; 1995 Jan; 669(1):150-2. PubMed ID: 7712160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuropeptide Y (NPY) or fragment NPY 13-36, but not NPY 18-36, inhibit retinotectal transfer in cane toads Bufo marinus.
    Schwippert WW; Röttgen A; Ewert JP
    Neurosci Lett; 1998 Aug; 253(1):33-6. PubMed ID: 9754798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pretecto-tectal interactions: effects of lesioning and stimulating the pretectum on field potentials in the optic tectum of salamanders in vitro.
    Luksch H; Roth G
    Neurosci Lett; 1996 Oct; 217(2-3):137-40. PubMed ID: 8916091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disproportionate distribution of field potentials across the toad's tectal visual map in response to diffuse light ON and OFF stimulations.
    Schwippert WW; Beneke TW; Ewert JP
    Vision Res; 1996 Jan; 36(1):19-26. PubMed ID: 8746239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuropeptide Y suppresses glucose utilization in the dorsal optic tectum towards visual stimulation in the toad Bombina orientalis: a [14C]2DG study.
    Funke S; Ewert JP
    Neurosci Lett; 2006 Jan; 392(1-2):43-6. PubMed ID: 16209904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of the optic tectum to telencephalic stimulation in catfish.
    Lee LT; Bullock TH
    Brain Behav Evol; 1990; 35(6):313-24. PubMed ID: 2245312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo L.
    Satou M; Ewert JP
    J Comp Physiol A; 1985 Dec; 157(6):739-48. PubMed ID: 3939244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynaptic potentials of tectal neurons evoked by electrical stimulation of the pretectal nuclei in bullfrogs (Rana catesbeiana).
    Li X; Tsurudome K; Matsumoto N
    Brain Res; 2005 Aug; 1052(1):40-6. PubMed ID: 16004975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of pretectal lesions on tectal responses to visual stimulation in anurans: field potential, single neuron and behavior analyses.
    Ewert JP; Schürg-Pfeiffer E; Schwippert WW
    Acta Biol Hung; 1996; 47(1-4):89-111. PubMed ID: 9124015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual wulst influences on the optic tectum of the pigeon.
    Bagnoli B; Francesconi W; Magni F
    Brain Behav Evol; 1977; 14(3):217-37. PubMed ID: 851846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsynaptic potentials in neurons of the pigeon's optic tectum in response to afferent stimulation from the retina and other visual structures: an intracellular study.
    Hardy O; Leresche N; Jassik-Gerschenfeld D
    Brain Res; 1984 Oct; 311(1):65-74. PubMed ID: 6488045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intracellular study of pretectal influence on the optic tectum of the frog, Rana catesbeiana.
    Kang HJ; Li XH
    Neurosci Bull; 2007 Mar; 23(2):113-8. PubMed ID: 17592534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GnRH suppresses excitability of visual processing neurons in the optic tectum.
    Umatani C; Misu R; Oishi S; Yamaguchi K; Abe H; Oka Y
    J Neurophysiol; 2015 Nov; 114(5):2775-84. PubMed ID: 26354319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory mechanism in zebrafish optic tectum: visual response properties of tectal cells altered by picrotoxin and bicuculline.
    Sajovic P; Levinthal C
    Brain Res; 1983 Jul; 271(2):227-40. PubMed ID: 6616176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic terminals form axosomatic synapses with deep tectal neurons in Bufo marinus.
    Gábriel R; Straznicky C
    Neurobiology (Bp); 1993; 1(4):313-25. PubMed ID: 8069289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapses of optic axons with GABA- and glutamate-containing elements in the optic tectum of Bufo marinus.
    Gábriel R; Straznicky C
    J Hirnforsch; 1995; 36(3):329-40. PubMed ID: 7560905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postsynaptic potentials and morphological features of tectal cells in homing pigeons.
    Wu GY; Wang SR; Yan K
    Sci China B; 1993 Mar; 36(3):297-304. PubMed ID: 8397800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonism of the actions of glutamate by pentobarbitone or midazolam in the frog optic tectum in vitro.
    Sivilotti L; Nistri A
    Neuropharmacology; 1989 Oct; 28(10):1107-12. PubMed ID: 2812283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia).
    Gamlin PD; Reiner A; Keyser KT; Brecha N; Karten HJ
    J Comp Neurol; 1996 May; 368(3):424-38. PubMed ID: 8725349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.