These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1011 related articles for article (PubMed ID: 7712481)
1. Effectiveness of delta-aminolevulinic acid-induced protoporphyrin as a photosensitizer for photodynamic therapy in vivo. Hua Z; Gibson SL; Foster TH; Hilf R Cancer Res; 1995 Apr; 55(8):1723-31. PubMed ID: 7712481 [TBL] [Abstract][Full Text] [Related]
2. Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts. Peng Q; Warloe T; Moan J; Godal A; Apricena F; Giercksky KE; Nesland JM Cancer Res; 2001 Aug; 61(15):5824-32. PubMed ID: 11479222 [TBL] [Abstract][Full Text] [Related]
3. Endogenous porphyrins in murine skin and transplanted PAM-212 squamous cell carcinoma tissues after injection of delta-aminolevulinic acid. Xu S; Menon IA; Becker MA; Wiltshire JD; Haberman HF; Chen Z; Gaspari AA Chin Med J (Engl); 1995 Apr; 108(4):286-90. PubMed ID: 7789217 [TBL] [Abstract][Full Text] [Related]
4. Tissue distribution and kinetics of endogenous porphyrins synthesized after topical application of ALA in different vehicles. Casas A; Fukuda H; Batlle AM Br J Cancer; 1999 Sep; 81(1):13-8. PubMed ID: 10487606 [TBL] [Abstract][Full Text] [Related]
5. Effect of estrogenic perturbations on delta-aminolevulinic acid-induced porphobilinogen deaminase and protoporphyrin IX levels in rat Harderian glands, liver, and R3230AC tumors. Gibson SL; Anderson LT; Havens JJ; Hilf R Biochem Pharmacol; 1999 Dec; 58(11):1821-9. PubMed ID: 10571258 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Ohgari Y; Nakayasu Y; Kitajima S; Sawamoto M; Mori H; Shimokawa O; Matsui H; Taketani S Biochem Pharmacol; 2005 Dec; 71(1-2):42-9. PubMed ID: 16288996 [TBL] [Abstract][Full Text] [Related]
7. Photodynamic therapy: regulation of porphyrin synthesis and hydrolysis from ALA esters. Di Venosa G; Fukuda H; Batlle A; Macrobert A; Casas A J Photochem Photobiol B; 2006 May; 83(2):129-36. PubMed ID: 16480890 [TBL] [Abstract][Full Text] [Related]
8. Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms. Fukuda H; Paredes S; Batlle AM Drug Des Deliv; 1989 Dec; 5(2):133-9. PubMed ID: 2577983 [TBL] [Abstract][Full Text] [Related]
9. Distribution of 5-aminolevulinic acid derivatives and induced porphyrin kinetics in mice tissues. Di Venosa G; Batlle A; Fukuda H; Macrobert A; Casas A Cancer Chemother Pharmacol; 2006 Oct; 58(4):478-86. PubMed ID: 16485117 [TBL] [Abstract][Full Text] [Related]
10. Evidence for a bystander role of neutrophils in the response to systemic 5-aminolevulinic acid-based photodynamic therapy. de Bruijn HS; Sluiter W; van der Ploeg-van den Heuvel A; Sterenborg HJ; Robinson DJ Photodermatol Photoimmunol Photomed; 2006 Oct; 22(5):238-46. PubMed ID: 16948825 [TBL] [Abstract][Full Text] [Related]
11. Metabolic properties and photosensitizing responsiveness of mono-L-aspartyl chlorin e6 in a mouse tumor model. Ferrario A; Kessel D; Gomer CJ Cancer Res; 1992 May; 52(10):2890-3. PubMed ID: 1581904 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Orenstein A; Kostenich G; Roitman L; Shechtman Y; Kopolovic Y; Ehrenberg B; Malik Z Br J Cancer; 1996 Apr; 73(8):937-44. PubMed ID: 8611429 [TBL] [Abstract][Full Text] [Related]
13. Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy. Di Venosa G; Hermida L; Fukuda H; Defain MV; Rodriguez L; Mamone L; MacRobert A; Casas A; Batlle A J Photochem Photobiol B; 2009 Aug; 96(2):152-8. PubMed ID: 19560367 [TBL] [Abstract][Full Text] [Related]
14. Induction of tumor necrosis by delta-aminolevulinic acid and 1,10-phenanthroline photodynamic therapy. Rebeiz N; Arkins S; Rebeiz CA; Simon J; Zachary JF; Kelley KW Cancer Res; 1996 Jan; 56(2):339-44. PubMed ID: 8542589 [TBL] [Abstract][Full Text] [Related]
16. In vivo fluorescence kinetics and photodynamic therapy efficacy of delta-aminolevulinic acid-induced porphyrins in basal cell carcinomas and actinic keratoses; implications for optimization of photodynamic therapy. Stefanidou M; Tosca A; Themelis G; Vazgiouraki E; Balas C Eur J Dermatol; 2000; 10(5):351-6. PubMed ID: 10882942 [TBL] [Abstract][Full Text] [Related]
17. Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. Casas A; Battah S; Di Venosa G; Dobbin P; Rodriguez L; Fukuda H; Batlle A; MacRobert AJ J Control Release; 2009 Apr; 135(2):136-43. PubMed ID: 19168101 [TBL] [Abstract][Full Text] [Related]
19. Uptake, localization, and photodynamic effect of meso-tetra(hydroxyphenyl)porphine and its corresponding chlorin in normal and tumor tissues of mice bearing mammary carcinoma. Peng Q; Moan J; Ma LW; Nesland JM Cancer Res; 1995 Jun; 55(12):2620-6. PubMed ID: 7780978 [TBL] [Abstract][Full Text] [Related]
20. Biodistribution of Photofrin II and 5-aminolevulinic acid-induced protoporphyrin IX in normal rat bladder and bladder tumor models: implications for photodynamic therapy. Xiao Z; Miller GG; McCallum TJ; Brown KM; Lown JW; Tulip J; Moore RB Photochem Photobiol; 1998 May; 67(5):573-83. PubMed ID: 9613241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]