These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7713327)

  • 41. The effect of mitomycin-C on postoperative corneal astigmatism in trabeculectomy and a triple procedure.
    Hong YJ; Choe CM; Lee YG; Chung HS; Kim HK
    Ophthalmic Surg Lasers; 1998 Jun; 29(6):484-9. PubMed ID: 9640570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Circadian rhythm in mitotic index of corneal epithelium: presence of Ehrlich ascites carcinoma and treatment with saline or hydroxyurea.
    Burns ER
    Anat Rec; 1981 Apr; 199(4):491-505. PubMed ID: 7270912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA synthesis during lens regeneration in larval Xenopus laevis.
    Waggoner PR; Reyer RW
    J Exp Zool; 1975 Apr; 192(1):65-71. PubMed ID: 1127410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeted gene expression in the chicken eye by in ovo electroporation.
    Chen YX; Krull CE; Reneker LW
    Mol Vis; 2004 Nov; 10():874-83. PubMed ID: 15570216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Cultivation of the retinal pigment epithelium in the cavity of the lentectomized eye of newts].
    Grigorian EN; Mitashov VI
    Ontogenez; 1985; 16(1):34-43. PubMed ID: 3974982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Duration of ERK1/2 phosphorylation induced by FGF or ocular media determines lens cell fate.
    Iyengar L; Wang Q; Rasko JE; McAvoy JW; Lovicu FJ
    Differentiation; 2007 Sep; 75(7):662-8. PubMed ID: 17381542
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Permissive and directive interactions in lens induction.
    Karkinen-Jääskeläinen M
    J Embryol Exp Morphol; 1978 Apr; 44():167-79. PubMed ID: 650134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lens induction in axolotls: comparison with inductive signaling mechanisms in Xenopus laevis.
    Servetnick MD; Cook TL; Grainger RM
    Int J Dev Biol; 1996 Aug; 40(4):755-61. PubMed ID: 8877449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low-dose mitomycin C as a prophylaxis for corneal haze in myopic surface ablation.
    Thornton I; Puri A; Xu M; Krueger RR
    Am J Ophthalmol; 2007 Nov; 144(5):673-681. PubMed ID: 17889818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2.
    Joyce NC; Harris DL; Mello DM
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2152-9. PubMed ID: 12091410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Apoptosis in the lens anlage of the heritable lens aplastic mouse (lap mouse).
    Aso S; Tashiro M; Baba R; Sawaki M; Noda S; Fujita M
    Teratology; 1998 Aug; 58(2):44-53. PubMed ID: 9787405
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Potentials for crystalline lens development in the corneal epithelium of Rana temporaria tadpoles].
    Simirskiĭ VN
    Ontogenez; 1982; 13(3):281-8. PubMed ID: 6980386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Larval-to-adult conversion of a myogenic system in the frog, Xenopus laevis, by larval-type myoblast-specific control of cell division, cell differentiation, and programmed cell death by triiodo-L-thyronine.
    Shibota Y; Kaneko Y; Kuroda M; Nishikawa A
    Differentiation; 2000 Dec; 66(4-5):227-38. PubMed ID: 11269949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lens forming transformations in larval Xenopus laevis induced by denatured eye-cup or its whole protein complement.
    Filoni S; Bosco L; Cioni C; Venturini G
    Experientia; 1983 Mar; 39(3):315-7. PubMed ID: 6825801
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lens differentiation from the cornea following lens extirpation or cornea transplantation in Xenopus laevis.
    Waggoner PR
    J Exp Zool; 1973 Oct; 186(1):97-110. PubMed ID: 4585215
    [No Abstract]   [Full Text] [Related]  

  • 56. Lens formation from cornea implanted into amputated hindlimbs of Xenopus laevis larvae requires innervation or proliferating cell populations in the stump.
    Cannata SM; Bernardini S; Filoni S
    Rouxs Arch Dev Biol; 1996 May; 205(7-8):443-449. PubMed ID: 28306096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The in vitro development of lens from cornea of larval Xenopus laevis.
    Campbell JC; Jones KW
    Dev Biol; 1968 Jan; 17(1):1-15. PubMed ID: 4868100
    [No Abstract]   [Full Text] [Related]  

  • 58. Mitomycin C-induced cell death in mouse lens epithelial cells.
    Park HK; Lee KW; Choi JS; Joo CK
    Ophthalmic Res; 2002; 34(4):213-9. PubMed ID: 12297694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Normogenesis of the cornea and its modification by cyclophosphamide in the animal experiment].
    Tost M; Tost F
    Klin Monbl Augenheilkd; 1990 Aug; 197(2):123-7. PubMed ID: 2243471
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Vivo and in Vitro Experimental Analysis of Lens Regeneration in Larval Xenopus laevis: (lens/regeneration/transdifferentiation).
    Bosco L; Valle C; Willems D
    Dev Growth Differ; 1993 Jun; 35(3):257-270. PubMed ID: 37281768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.