These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7713566)

  • 1. Protective role of interferon gamma, tumor necrosis factor alpha and interleukin-6 in Mycobacterium tuberculosis and M. avium infections.
    Appelberg R
    Immunobiology; 1994 Oct; 191(4-5):520-5. PubMed ID: 7713566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defects in cell-mediated immunity affect chronic, but not innate, resistance of mice to Mycobacterium avium infection.
    Doherty TM; Sher A
    J Immunol; 1997 May; 158(10):4822-31. PubMed ID: 9144497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effector mechanisms involved in cytokine-mediated bacteriostasis of Mycobacterium avium infections in murine macrophages.
    Appelberg R; Orme IM
    Immunology; 1993 Nov; 80(3):352-9. PubMed ID: 8288311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of IL-12 in immunotherapy and vaccine design in experimental Mycobacterium avium infections.
    Silva RA; Pais TF; Appelberg R
    J Immunol; 1998 Nov; 161(10):5578-85. PubMed ID: 9820535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection.
    Appelberg R; Castro AG; Pedrosa J; Silva RA; Orme IM; Minóprio P
    Infect Immun; 1994 Sep; 62(9):3962-71. PubMed ID: 8063414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Differential growth inhibition of mycobacteria by interferon-gamma-or tumor necrosis factor-alpha-treated murine peritoneal macrophages].
    Sato K; Tomioka H; Saito H
    Kekkaku; 1996 Nov; 71(11):607-14. PubMed ID: 8958673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of CD30/CD153 but not of CD27/CD70, CD134/OX40L, or CD137/4-1BBL to the optimal induction of protective immunity to Mycobacterium avium.
    Flórido M; Borges M; Yagita H; Appelberg R
    J Leukoc Biol; 2004 Nov; 76(5):1039-46. PubMed ID: 15316035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relative impact of bacterial virulence and host genetic background on cytokine expression during Mycobacterium avium infection of mice.
    Castro AG; Minóprio P; Appelberg R
    Immunology; 1995 Aug; 85(4):556-61. PubMed ID: 7558149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenously produced IL-12 is required for the induction of protective T cells during Mycobacterium avium infections in mice.
    Castro AG; Silva RA; Appelberg R
    J Immunol; 1995 Aug; 155(4):2013-9. PubMed ID: 7636252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Mycobacterium avium growth in vivo by cytokines: involvement of tumour necrosis factor in resistance to atypical mycobacteria.
    Denis M
    Clin Exp Immunol; 1991 Mar; 83(3):466-71. PubMed ID: 1900745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cytokines in tuberculosis.
    Flesch IE; Kaufmann SH
    Immunobiology; 1993 Nov; 189(3-4):316-39. PubMed ID: 8125515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional effects of cytokines on the growth of Mycobacterium avium within human monocytes.
    Shiratsuchi H; Johnson JL; Ellner JJ
    J Immunol; 1991 May; 146(9):3165-70. PubMed ID: 1901893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory mechanisms for production of IFN-gamma and TNF by antitumor T cells or macrophages in the tumor-bearing state.
    Yamamoto N; Zou JP; Li XF; Takenaka H; Noda S; Fujii T; Ono S; Kobayashi Y; Mukaida N; Matsushima K
    J Immunol; 1995 Mar; 154(5):2281-90. PubMed ID: 7868900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-CD3 single-chain Fv/interleukin-18 fusion DNA induces anti-mycobacterial resistance via efficient interferon-gamma production in BALB/c mice infected with Mycobacterium avium.
    Kim SH; Cho D; Kim TS
    Vaccine; 2006 Apr; 24(16):3365-73. PubMed ID: 16481075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Up-to-date understanding of tuberculosis immunity].
    Mitsuyama M; Akagawa K; Kobayashi K; Sugawara I; Kawakami K; Yamamoto S; Okada Z
    Kekkaku; 2003 Jan; 78(1):51-5. PubMed ID: 12683337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant tumour necrosis factor-alpha decreases whereas recombinant interleukin-6 increases growth of a virulent strain of Mycobacterium avium in human macrophages.
    Denis M; Gregg EO
    Immunology; 1990 Sep; 71(1):139-41. PubMed ID: 2120128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of interleukin-6 in the induction of protective T cells during mycobacterial infections in mice.
    Appelberg R; Castro AG; Pedrosa J; Minóprio P
    Immunology; 1994 Jul; 82(3):361-4. PubMed ID: 7959868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitogen-activated protein kinases p38 and ERK1/2 regulated control of Mycobacterium avium replication in primary murine macrophages is independent of tumor necrosis factor-α and interleukin-10.
    Klug K; Ehlers S; Uhlig S; Reiling N
    Innate Immun; 2011 Oct; 17(5):470-85. PubMed ID: 20682586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection.
    Cooper AM; Roberts AD; Rhoades ER; Callahan JE; Getzy DM; Orme IM
    Immunology; 1995 Mar; 84(3):423-32. PubMed ID: 7751026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.