These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 7713624)

  • 1. Role of beta-adrenergic mechanisms in exercise training-induced metabolic changes in respiratory and locomotor muscle.
    Powers SK; Wade M; Criswell D; Herb RA; Dodd S; Hussain R; Martin D
    Int J Sports Med; 1995 Jan; 16(1):13-8. PubMed ID: 7713624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endurance training-induced increases in expiratory muscle oxidative capacity.
    Grinton S; Powers SK; Lawler J; Criswell D; Dodd S; Edwards W
    Med Sci Sports Exerc; 1992 May; 24(5):551-5. PubMed ID: 1533265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function.
    Betik AC; Baker DJ; Krause DJ; McConkey MJ; Hepple RT
    Exp Physiol; 2008 Jul; 93(7):863-71. PubMed ID: 18356556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of increased training volume on the oxidative capacity, glycogen content and tension development of rat skeletal muscle.
    Kirwan JP; Costill DL; Flynn MG; Neufer PD; Fink WJ; Morse WM
    Int J Sports Med; 1990 Dec; 11(6):479-83. PubMed ID: 2286488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary whey protein downregulates fatty acid synthesis in the liver, but upregulates it in skeletal muscle of exercise-trained rats.
    Morifuji M; Sakai K; Sanbongi C; Sugiura K
    Nutrition; 2005 Oct; 21(10):1052-8. PubMed ID: 16157243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of exercise training on glucose tolerance and skeletal muscle triacylglycerol content in rats fed with a high-fat diet.
    Straczkowski M; Kowalska I; Dzienis-Straczkowska S; Kinalski M; Górski J; Kinalska I
    Diabetes Metab; 2001 Feb; 27(1):19-23. PubMed ID: 11240441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of upper airway muscles to chronic endurance exercise.
    Vincent HK; Shanely RA; Stewart DJ; Demirel HA; Hamilton KL; Ray AD; Michlin C; Farkas GA; Powers SK
    Am J Respir Crit Care Med; 2002 Aug; 166(3):287-93. PubMed ID: 12153959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.
    Morifuji M; Sanbongi C; Sugiura K
    Br J Nutr; 2006 Sep; 96(3):469-75. PubMed ID: 16925851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sprint-interval training-induced alterations of Myosin heavy chain isoforms and enzyme activities in rat diaphragm: effect of normobaric hypoxia.
    Ogura Y; Naito H; Aoki J; Uchimaru J; Sugiura T; Katamoto S
    Jpn J Physiol; 2005 Dec; 55(6):309-16. PubMed ID: 16324224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise and beta-adrenergic regulation of rat cardiac myosin isoforms.
    Wade ME; Herb RA; Powers SK; Criswell D
    J Sports Med Phys Fitness; 1999 Mar; 39(1):42-6. PubMed ID: 10230168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducibility of NADP-specific isocitrate dehydrogenase with endurance training in skeletal muscle.
    Lawler JM; Powers SK; Criswell DS
    Acta Physiol Scand; 1993 Oct; 149(2):177-81. PubMed ID: 8266807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging and respiratory muscle metabolic plasticity: effects of endurance training.
    Powers SK; Lawler J; Criswell D; Lieu FK; Martin D
    J Appl Physiol (1985); 1992 Mar; 72(3):1068-73. PubMed ID: 1568962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic adaptation to physical training under beta-blockade in the rat. Evidence of a beta 2-adrenergic mechanism in skeletal muscle.
    Ji LL; Lennon DL; Kochan RG; Nagle FJ; Lardy HA
    J Clin Invest; 1986 Sep; 78(3):771-8. PubMed ID: 2875082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High intensity exercise training-induced metabolic alterations in respiratory muscles.
    Powers SK; Grinton S; Lawler J; Criswell D; Dodd S
    Respir Physiol; 1992 Aug; 89(2):169-77. PubMed ID: 1439299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise training-induced changes in respiratory muscles.
    Powers SK; Coombes J; Demirel H
    Sports Med; 1997 Aug; 24(2):120-31. PubMed ID: 9291552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic responses of rat respiratory muscles to voluntary exercise training.
    Halseth AE; Fogt DL; Fregosi RF; Henriksen EJ
    J Appl Physiol (1985); 1995 Sep; 79(3):902-7. PubMed ID: 8567534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endurance-training-induced cellular adaptations in respiratory muscles.
    Powers SK; Lawler J; Criswell D; Dodd S; Grinton S; Bagby G; Silverman H
    J Appl Physiol (1985); 1990 May; 68(5):2114-8. PubMed ID: 2361913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of beta 1- vs. beta 1- beta 2-blockade on training adaptations in rat skeletal muscle.
    Thomas DP; Jenkins RR
    J Appl Physiol (1985); 1986 May; 60(5):1722-6. PubMed ID: 2872198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise and glucocorticoid-induced diaphragmatic myopathy.
    Lieu FK; Powers SK; Herb RA; Criswell D; Martin D; Wood C; Stainsby W; Chen CL
    J Appl Physiol (1985); 1993 Aug; 75(2):763-71. PubMed ID: 8226480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moderate exercise training induces ROS-related adaptations to skeletal muscles.
    Abruzzo PM; Esposito F; Marchionni C; di Tullio S; Belia S; Fulle S; Veicsteinas A; Marini M
    Int J Sports Med; 2013 Aug; 34(8):676-87. PubMed ID: 23325712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.