These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 7714254)
1. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1. Whitehead ML; McCoy MJ; Lonsbury-Martin BL; Martin GK J Acoust Soc Am; 1995 Apr; 97(4):2346-58. PubMed ID: 7714254 [TBL] [Abstract][Full Text] [Related]
2. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1,L2 space. Whitehead ML; Stagner BB; McCoy MJ; Lonsbury-Martin BL; Martin GK J Acoust Soc Am; 1995 Apr; 97(4):2359-77. PubMed ID: 7714255 [TBL] [Abstract][Full Text] [Related]
3. From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss. Gorga MP; Neely ST; Ohlrich B; Hoover B; Redner J; Peters J Ear Hear; 1997 Dec; 18(6):440-55. PubMed ID: 9416447 [TBL] [Abstract][Full Text] [Related]
4. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates. Abdala C J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474 [TBL] [Abstract][Full Text] [Related]
5. Repeatability of distortion product otoacoustic emissions in normally hearing humans. Roede J; Harris FP; Probst R; Xu L Audiology; 1993; 32(5):273-81. PubMed ID: 8216026 [TBL] [Abstract][Full Text] [Related]
6. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears. Hauser R; Probst R J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169 [TBL] [Abstract][Full Text] [Related]
7. Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions. Fitzgerald TS; Prieve BA J Speech Lang Hear Res; 2005 Oct; 48(5):1165-86. PubMed ID: 16411804 [TBL] [Abstract][Full Text] [Related]
8. Cochlear Mechanisms and Otoacoustic Emission Test Performance. Go NA; Stamper GC; Johnson TA Ear Hear; 2019; 40(2):401-417. PubMed ID: 29952805 [TBL] [Abstract][Full Text] [Related]
9. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319 [TBL] [Abstract][Full Text] [Related]
11. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions. Neely ST; Gorga MP; Dorn PA J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203 [TBL] [Abstract][Full Text] [Related]
12. Suppression of the 2f1-f2 otoacoustic emission in humans. Harris FP; Probst R; Xu L Hear Res; 1992 Dec; 64(1):133-41. PubMed ID: 1490896 [TBL] [Abstract][Full Text] [Related]
13. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs. Moulin A J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802 [TBL] [Abstract][Full Text] [Related]
14. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure. Johnson TA; Baranowski LG Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451 [TBL] [Abstract][Full Text] [Related]
15. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery and effects of lowering L2. Sutton LA; Lonsbury-Martin BL; Martin GK; Whitehead ML Hear Res; 1994 May; 75(1-2):161-74. PubMed ID: 8071143 [TBL] [Abstract][Full Text] [Related]