BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 7714255)

  • 1. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1,L2 space.
    Whitehead ML; Stagner BB; McCoy MJ; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Apr; 97(4):2359-77. PubMed ID: 7714255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1.
    Whitehead ML; McCoy MJ; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Apr; 97(4):2346-58. PubMed ID: 7714254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates.
    Abdala C
    J Acoust Soc Am; 1996 Dec; 100(6):3726-40. PubMed ID: 8969474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locus of generation for the 2f1-f2 vs 2f2-f1 distortion-product otoacoustic emissions in normal-hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations.
    Martin GK; Jassir D; Stagner BB; Whitehead ML; Lonsbury-Martin BL
    J Acoust Soc Am; 1998 Apr; 103(4):1957-71. PubMed ID: 9566319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions.
    Fitzgerald TS; Prieve BA
    J Speech Lang Hear Res; 2005 Oct; 48(5):1165-86. PubMed ID: 16411804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From laboratory to clinic: a large scale study of distortion product otoacoustic emissions in ears with normal hearing and ears with hearing loss.
    Gorga MP; Neely ST; Ohlrich B; Hoover B; Redner J; Peters J
    Ear Hear; 1997 Dec; 18(6):440-55. PubMed ID: 9416447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human efferent adaptation of DPOAEs in the L1,L2 space.
    Meinke DK; Stagner BB; Martin GK; Lonsbury-Martin BL
    Hear Res; 2005 Oct; 208(1-2):89-100. PubMed ID: 16019174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. I. Intersubject variability and consequences on the DPOAE-gram.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1460-70. PubMed ID: 10738801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions.
    Johnson TA; Neely ST; Garner CA; Gorga MP
    J Acoust Soc Am; 2006 Jan; 119(1):418-28. PubMed ID: 16454296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears.
    Hauser R; Probst R
    J Acoust Soc Am; 1991 Jan; 89(1):280-6. PubMed ID: 2002169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical significance of relative probe-tone levels on distortion product otoacoustic emissions.
    Rasmussen AN; Popelka GR; Osterhammel PA; Nielsen LH
    Scand Audiol; 1993; 22(4):223-9. PubMed ID: 8146586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Nov; 92(5):2662-82. PubMed ID: 1479129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST; Gorga MP; Dorn PA
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Input-output functions of the nonlinear-distortion component of distortion-product otoacoustic emissions in normal and hearing-impaired human ears.
    Zelle D; Lorenz L; Thiericke JP; Gummer AW; Dalhoff E
    J Acoust Soc Am; 2017 May; 141(5):3203. PubMed ID: 28599560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeatability of distortion product otoacoustic emissions in normally hearing humans.
    Roede J; Harris FP; Probst R; Xu L
    Audiology; 1993; 32(5):273-81. PubMed ID: 8216026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ABR and DPOAE detection of cochlear damage by gentamicin.
    Shi Y; Martin WH
    J Basic Clin Physiol Pharmacol; 1997; 8(3):141-55. PubMed ID: 9429983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss.
    Reavis KM; Phillips DS; Fausti SA; Gordon JS; Helt WJ; Wilmington D; Bratt GW; Konrad-Martin D
    Ear Hear; 2008 Dec; 29(6):875-93. PubMed ID: 18753950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Optimal Stimulus Frequency Ratio for Measurement of the Quadratic f2-f1 Distortion Product Otoacoustic Emission in Humans.
    Baiduc RR; Dhar S
    J Speech Lang Hear Res; 2018 Jul; 61(7):1794-1806. PubMed ID: 29946695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears.
    Boege P; Janssen T
    J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.