These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7714268)

  • 21. A methodological study of hemilaryngeal phonation.
    Jiang JJ; Titze IR
    Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Entrance loss coefficients and exit coefficients for a physical model of the glottis with convergent angles.
    Fulcher LP; Scherer RC; Anderson NV
    J Acoust Soc Am; 2014 Sep; 136(3):1312. PubMed ID: 25190404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whispering--a single-subject study of glottal configuration and aerodynamics.
    Sundberg J; Scherer R; Hess M; Müller F
    J Voice; 2010 Sep; 24(5):574-84. PubMed ID: 19850445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions.
    Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of laryngeal nerve stimulation on phonation: a glottographic study using an in vivo canine model.
    Moore DM; Berke GS
    J Acoust Soc Am; 1988 Feb; 83(2):705-15. PubMed ID: 3351129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pressure and velocity profiles in a static mechanical hemilarynx model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2002 Dec; 112(6):2996-3003. PubMed ID: 12509021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric glottal jet deflection: differences of two- and three-dimensional models.
    Mattheus W; Brücker C
    J Acoust Soc Am; 2011 Dec; 130(6):EL373-9. PubMed ID: 22225129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulating glottal airflow in phonation: application of the maximum power transfer theorem to a low dimensional phonation model.
    Titze IR
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):367-76. PubMed ID: 11831809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survival in Vivo Canine Phonation Model Without Stimulation.
    Liu K; Ge P; Sheng X; Jiang J; Qin H
    Ann Otol Rhinol Laryngol; 2018 Mar; 127(3):178-184. PubMed ID: 29298508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonstimulated rabbit phonation model: Cricothyroid approximation.
    Novaleski CK; Kojima T; Chang S; Luo H; Valenzuela CV; Rousseau B
    Laryngoscope; 2016 Jul; 126(7):1589-94. PubMed ID: 26971861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model.
    Owaki S; Kataoka H; Shimizu T
    J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of transglottal pressure on fundamental frequency of phonation: study with a rubber model.
    Kataoka H; Kitajima K; Owaki S
    Ann Otol Rhinol Laryngol; 2001 Jan; 110(1):56-62. PubMed ID: 11201810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vortex Formation Times in the Glottal Jet, Measured in a Scaled-Up Model.
    Krane M
    Fluids (Basel); 2021 Nov; 6(11):. PubMed ID: 34840965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Function of the posterior cricoarytenoid muscle in phonation: in vivo laryngeal model.
    Choi HS; Berke GS; Ye M; Kreiman J
    Otolaryngol Head Neck Surg; 1993 Dec; 109(6):1043-51. PubMed ID: 8265188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical simulation and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models.
    Cisonni J; Van Hirtum A; Pelorson X; Willems J
    J Acoust Soc Am; 2008 Jul; 124(1):535-45. PubMed ID: 18646996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The phonation critical condition in rectangular glottis with wide prephonatory gaps.
    Tao C; Jiang JJ
    J Acoust Soc Am; 2008 Mar; 123(3):1637-41. PubMed ID: 18345851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.