These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 7714557)

  • 21. Interactions of pattern-generating interneurons controlling feeding in Lymnaea stagnalis.
    Elliott CJ; Benjamin PR
    J Neurophysiol; 1985 Dec; 54(6):1396-411. PubMed ID: 4087040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polycyclic neuromodulation of the feeding rhythm of the pond snail Lymnaea stagnalis by the intrinsic octopaminergic interneuron, OC.
    Elliott CJ; Vehovszky A
    Brain Res; 2000 Dec; 887(1):63-9. PubMed ID: 11134590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network.
    Vavoulis DV; Straub VA; Kemenes I; Kemenes G; Feng J; Benjamin PR
    Eur J Neurosci; 2007 May; 25(9):2805-18. PubMed ID: 17561845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple types of control by identified interneurons in a sensory-activated rhythmic motor pattern.
    Kemenes G; Staras K; Benjamin PR
    J Neurosci; 2001 Apr; 21(8):2903-11. PubMed ID: 11306642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholinergic interneurons in the feeding system of the pond snail Lymnaea stagnalis. II. N1 interneurons make cholinergic synapses with feeding motoneurons.
    Elliott CJ; Kemenes G
    Philos Trans R Soc Lond B Biol Sci; 1992 May; 336(1277):167-80. PubMed ID: 1353265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Memory trace in feeding neural circuitry underlying conditioned taste aversion in Lymnaea.
    Ito E; Otsuka E; Hama N; Aonuma H; Okada R; Hatakeyama D; Fujito Y; Kobayashi S
    PLoS One; 2012; 7(8):e43151. PubMed ID: 22900097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural network controlling feeding in Lymnaea stagnalis: immunocytochemical localization of myomodulin, small cardioactive peptide, buccalin, and FMRFamide-related peptides.
    Santama N; Brierley M; Burke JF; Benjamin PR
    J Comp Neurol; 1994 Apr; 342(3):352-65. PubMed ID: 7912700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multilevel inhibition of feeding by a peptidergic pleural interneuron in the mollusc Lymnaea stagnalis.
    Alania M; Sakharov DA; Elliott CJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 May; 190(5):379-90. PubMed ID: 15042400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pattern generation in the buccal system of freely behaving Lymnaea stagnalis.
    Jansen RF; Pieneman AW; Maat AT
    J Neurophysiol; 1999 Dec; 82(6):3378-91. PubMed ID: 10601469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Octopamine is the synaptic transmitter between identified neurons in the buccal feeding network of the pond snail lymnaea stagnalis.
    Vehovszky A; Hiripi L; Elliott CJ
    Brain Res; 2000 Jun; 867(1-2):188-99. PubMed ID: 10837813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Different roles of neurons B63 and B34 that are active during the protraction phase of buccal motor programs in Aplysia californica.
    Hurwitz I; Kupfermann I; Susswein AJ
    J Neurophysiol; 1997 Sep; 78(3):1305-19. PubMed ID: 9310422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica.
    Hurwitz I; Susswein AJ
    J Neurophysiol; 1996 Apr; 75(4):1327-44. PubMed ID: 8727381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide suppresses fictive feeding response in Lymnaea stagnalis.
    Kobayashi S; Ogawa H; Fujito Y; Ito E
    Neurosci Lett; 2000 May; 285(3):209-12. PubMed ID: 10806323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification and characterization of catecholaminergic neuron B65, which initiates and modifies patterned activity in the buccal ganglia of Aplysia.
    Kabotyanski EA; Baxter DA; Byrne JH
    J Neurophysiol; 1998 Feb; 79(2):605-21. PubMed ID: 9463425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CPG component LE generates depolarization of buccal neurons by producing constant plateau potentials during feeding responses of Aplysia kurodai.
    Kinugawa A; Nagahama T
    Zoolog Sci; 2006 Jul; 23(7):613-25. PubMed ID: 16908961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Esophageal mechanoreceptors in the feeding system of the pond snail, Lymnaea stagnalis.
    Elliott CJ; Benjamin PR
    J Neurophysiol; 1989 Apr; 61(4):727-36. PubMed ID: 2723718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc.
    Elphick MR; Kemenes G; Staras K; O'Shea M
    J Neurosci; 1995 Nov; 15(11):7653-64. PubMed ID: 7472516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An identified glutamatergic interneuron patterns feeding motor activity via both excitation and inhibition.
    Quinlan EM; Gregory K; Murphy AD
    J Neurophysiol; 1995 Mar; 73(3):945-56. PubMed ID: 7608779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crustacean cardioactive peptide (CCAP)-related molluscan peptides (M-CCAPs) are potential extrinsic modulators of the buccal feeding network in the pond snail Lymnaea stagnalis.
    Vehovszky A; Agricola HJ; Elliott CJ; Ohtani M; Kárpáti L; Hernádi L
    Neurosci Lett; 2005 Jan; 373(3):200-5. PubMed ID: 15619543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms underlying fictive feeding in aplysia: coupling between a large neuron with plateau potentials activity and a spiking neuron.
    Susswein AJ; Hurwitz I; Thorne R; Byrne JH; Baxter DA
    J Neurophysiol; 2002 May; 87(5):2307-23. PubMed ID: 11976370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.