BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 7714820)

  • 1. Factors controlling changes in intracellular Ca2+ concentration produced by noradrenaline in rat mesenteric artery smooth muscle cells.
    Baró I; Eisner DA
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):247-58. PubMed ID: 7714820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of thapsigargin on [Ca2+]i in isolated rat mesenteric artery vascular smooth muscle cells.
    Baró I; Eisner DA
    Pflugers Arch; 1992 Jan; 420(1):115-7. PubMed ID: 1553258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of inositol (1,4,5)-trisphosphate, intracellular Ca2+ release and myofilament Ca2+ sensitization in 5-hydroxytryptamine-evoked contraction of rabbit mesenteric artery.
    Seager JM; Murphy TV; Garland CJ
    Br J Pharmacol; 1994 Feb; 111(2):525-32. PubMed ID: 8004397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of intracellular [Ca2+] during refilling of sarcoplasmic reticulum in rat ventricular and vascular smooth muscle.
    Baró I; O'Neill SC; Eisner DA
    J Physiol; 1993 Jun; 465():21-41. PubMed ID: 8229834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of pulmonary vascular smooth muscle tone by sarcoplasmic reticulum Ca2+ pump blockers: thapsigargin and cyclopiazonic acid.
    Gonzalez De La Fuente P; Savineau JP; Marthan R
    Pflugers Arch; 1995 Mar; 429(5):617-24. PubMed ID: 7792139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thapsigargin and ryanodine on vascular contractility: cross-talk between sarcoplasmic reticulum and plasmalemma.
    Low AM; Darby PJ; Kwan CY; Daniel EE
    Eur J Pharmacol; 1993 Jan; 230(1):53-62. PubMed ID: 8428604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of norepinephrine and caffeine-induced activation by ryanodine and thapsigargin in rat mesenteric arteries.
    Garcha RS; Hughes AD
    J Cardiovasc Pharmacol; 1995 May; 25(5):840-6. PubMed ID: 7630163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The superficial buffer barrier in venous smooth muscle: sarcoplasmic reticulum refilling and unloading.
    Chen Q; van Breemen C
    Br J Pharmacol; 1993 Jun; 109(2):336-43. PubMed ID: 8358539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristic features of noradrenaline-induced Ca2+ mobilization and tension in arterial smooth muscle of the rabbit.
    Itoh T; Kajikuri J; Kuriyama H
    J Physiol; 1992 Nov; 457():297-314. PubMed ID: 1297837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionally and spatially distinct Ca2+ stores are revealed in cultured vascular smooth muscle cells.
    Tribe RM; Borin ML; Blaustein MP
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5908-12. PubMed ID: 8016087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of a water-soluble forskolin derivative (NKH477) and a membrane-permeable cyclic AMP analogue on noradrenaline-induced Ca2+ mobilization in smooth muscle of rabbit mesenteric artery.
    Ito S; Suzuki S; Itoh T
    Br J Pharmacol; 1993 Nov; 110(3):1117-25. PubMed ID: 8298800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery.
    Itoh T; Kanmura Y; Kuriyama H
    J Physiol; 1985 Feb; 359():467-84. PubMed ID: 3923186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ mobilization by caffeine in single smooth muscle cells of the rat tail artery.
    Alexander PB; Cheung DW
    Eur J Pharmacol; 1994 Dec; 288(1):79-88. PubMed ID: 7705471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional coupling between the caffeine/ryanodine-sensitive Ca2+ store and mitochondria in rat aortic smooth muscle cells.
    Vallot O; Combettes L; Lompré AM
    Biochem J; 2001 Jul; 357(Pt 2):363-71. PubMed ID: 11439085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple effects of ryanodine on intracellular free Ca2+ in smooth muscle cells from bovine and porcine coronary artery: modulation of sarcoplasmic reticulum function.
    Wagner-Mann C; Hu Q; Sturek M
    Br J Pharmacol; 1992 Apr; 105(4):903-11. PubMed ID: 1504718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The superficial buffer barrier in vascular smooth muscle.
    Chen Q; Cannell M; van Breemen C
    Can J Physiol Pharmacol; 1992 Apr; 70(4):509-14. PubMed ID: 1386774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling and buffering of intracellular calcium in vascular smooth muscle from genetically hypertensive rats.
    Kanagy NL; Ansari MN; Ghosh S; Webb RC
    J Hypertens; 1994 Dec; 12(12):1365-72. PubMed ID: 7706695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of voltage-independent Ca2+ entry by noradrenaline involves cGMP in vascular myocytes.
    Grégoire G; Pacaud P; Loirand G
    Cell Calcium; 1995 Dec; 18(6):505-14. PubMed ID: 8746949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1994 Apr; 476(2):279-93. PubMed ID: 8046643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between noradrenaline-induced contraction and 45Ca efflux stimulation in rabbit mesenteric artery.
    Leijten PA; van Breemen C
    Br J Pharmacol; 1986 Dec; 89(4):739-47. PubMed ID: 3814908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.