These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 7714888)

  • 21. Ca2+-dependent inactivation of large conductance Ca2+-activated K+ (BK) channels in rat hippocampal neurones produced by pore block from an associated particle.
    Hicks GA; Marrion NV
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):721-34. PubMed ID: 9518728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1999 Jul; 114(1):93-124. PubMed ID: 10398695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.
    Nimigean CM; Magleby KL
    J Gen Physiol; 2000 Jun; 115(6):719-36. PubMed ID: 10828246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane stiffness and channel function.
    Lundbaek JA; Birn P; Girshman J; Hansen AJ; Andersen OS
    Biochemistry; 1996 Mar; 35(12):3825-30. PubMed ID: 8620005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of a potassium-selective ion channel from the plasma membrane of the broad bean Vicia faba L.
    Zeilinger C
    FEBS Lett; 1994 Jul; 348(3):278-82. PubMed ID: 8034054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of beta4 subunit modulation of BK channels.
    Wang B; Rothberg BS; Brenner R
    J Gen Physiol; 2006 Apr; 127(4):449-65. PubMed ID: 16567466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constitutive boost of a K
    Iwamoto M; Oiki S
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):13117-13122. PubMed ID: 30509986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH modulation of large conductance potassium channel from adrenal chromaffin granules.
    Hordejuk R; Lobanov NA; Kicinska A; Szewczyk A; Dolowy K
    Mol Membr Biol; 2004; 21(5):307-13. PubMed ID: 15513738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel approach allows identification of K channels in the lateral membrane of rat CCD.
    Wang WH; McNicholas CM; Segal AS; Giebisch G
    Am J Physiol; 1994 May; 266(5 Pt 2):F813-22. PubMed ID: 8203566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium-activated potassium channels in goldfish hair cells.
    Sugihara I
    J Physiol; 1994 May; 476(3):373-90. PubMed ID: 8057247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium-activated potassium channels in the luminal membrane of Amphiuma diluting segment: voltage-dependent block by intracellular Na+ upon depolarisation.
    Kawahara K; Hunter M; Giebisch G
    Pflugers Arch; 1990 Jun; 416(4):422-7. PubMed ID: 2399115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle.
    Rothberg BS; Bello RA; Song L; Magleby KL
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):673-89. PubMed ID: 8799891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of iberiotoxin block of the large-conductance calcium-activated potassium channel from bovine aortic smooth muscle.
    Giangiacomo KM; Garcia ML; McManus OB
    Biochemistry; 1992 Jul; 31(29):6719-27. PubMed ID: 1379069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.
    Mueller P
    Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vinpocetine-induced stimulation of calcium-activated potassium currents in rat pituitary GH3 cells.
    Wu SN; Li HF; Chiang HT
    Biochem Pharmacol; 2001 Apr; 61(7):877-92. PubMed ID: 11274974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane thickness changes ion-selectivity of channel-proteins.
    Garavaglia M; Dopinto S; Ritter M; Fürst J; Saino S; Guizzardi F; Jakab M; Bazzini C; Vezzoli V; Dossena S; Rodighiero S; Sironi C; Bottà G; Meyer G; Henderson RM; Paulmichl M
    Cell Physiol Biochem; 2004; 14(4-6):231-40. PubMed ID: 15319526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion channels of Fasciola hepatica incorporated into planar lipid bilayers.
    Jang JH; Kim SD; Park JB; Hong SJ; Ryu PD
    Parasitology; 2004 Jan; 128(Pt 1):83-9. PubMed ID: 15002907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH modulation of Ca2+ responses and a Ca2+-dependent K+ channel in cultured rat hippocampal neurones.
    Church J; Baxter KA; McLarnon JG
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):119-32. PubMed ID: 9679168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.