These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7715195)

  • 1. Evolutionary conservation of both the hydrophilic and hydrophobic nature of transmembrane residues.
    Riek RP; Handschumacher MD; Sung SS; Tan M; Glynias MJ; Schluchter MD; Novotny J; Graham RM
    J Theor Biol; 1995 Feb; 172(3):245-58. PubMed ID: 7715195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence conservation in families whose members have little or no sequence similarity: the four-helical cytokines and cytochromes.
    Hill EE; Morea V; Chothia C
    J Mol Biol; 2002 Sep; 322(1):205-33. PubMed ID: 12215425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between sequence and structure in membrane proteins.
    Olivella M; Gonzalez A; Pardo L; Deupi X
    Bioinformatics; 2013 Jul; 29(13):1589-92. PubMed ID: 23677941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
    Fariselli P; Finelli M; Marchignoli D; Martelli PL; Rossi I; Casadio R
    Bioinformatics; 2003 Mar; 19(4):500-5. PubMed ID: 12611805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural dissection of amino acid substitutions in helical transmembrane proteins.
    Mokrab Y; Stevens TJ; Mizuguchi K
    Proteins; 2010 Nov; 78(14):2895-907. PubMed ID: 20715054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix.
    Ndhlovu A; Hazelhurst S; Durand PM
    BMC Bioinformatics; 2015 Aug; 16():255. PubMed ID: 26269100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New alignment strategy for transmembrane proteins.
    Cserzö M; Bernassau JM; Simon I; Maigret B
    J Mol Biol; 1994 Oct; 243(3):388-96. PubMed ID: 7966267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of the conserved residues between halobacterial retinal proteins and G-protein coupled receptors: implications for GPCR modeling.
    Metzger TG; Paterlini MG; Portoghese PS; Ferguson DM
    J Chem Inf Comput Sci; 1996; 36(4):857-61. PubMed ID: 8768770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily.
    Seigneuret M
    Biophys J; 2006 Jan; 90(1):212-27. PubMed ID: 16352525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved sequence motifs in human TMTC1, TMTC2, TMTC3, and TMTC4, new O-mannosyltransferases from the GT-C/PMT clan, are rationalized as ligand binding sites.
    Eisenhaber B; Sinha S; Jadalanki CK; Shitov VA; Tan QW; Sirota FL; Eisenhaber F
    Biol Direct; 2021 Jan; 16(1):4. PubMed ID: 33436046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants.
    Altenbach C; Marti T; Khorana HG; Hubbell WL
    Science; 1990 Jun; 248(4959):1088-92. PubMed ID: 2160734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for alpha-helical integral membrane protein fold prediction.
    Taylor WR; Jones DT; Green NM
    Proteins; 1994 Mar; 18(3):281-94. PubMed ID: 8202469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The secretory carrier membrane protein family: structure and membrane topology.
    Hubbard C; Singleton D; Rauch M; Jayasinghe S; Cafiso D; Castle D
    Mol Biol Cell; 2000 Sep; 11(9):2933-47. PubMed ID: 10982391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 50 years of amino acid hydrophobicity scales: revisiting the capacity for peptide classification.
    Simm S; Einloft J; Mirus O; Schleiff E
    Biol Res; 2016 Jul; 49(1):31. PubMed ID: 27378087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the SwissProt database: the PRED-TMR algorithm.
    Pasquier C; Promponas VJ; Palaios GA; Hamodrakas JS; Hamodrakas SJ
    Protein Eng; 1999 May; 12(5):381-5. PubMed ID: 10360978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships.
    Kuan J; Saier MH
    Crit Rev Biochem Mol Biol; 1993; 28(3):209-33. PubMed ID: 8325039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structures of membrane proteins from genomic sequencing.
    Hopf TA; Colwell LJ; Sheridan R; Rost B; Sander C; Marks DS
    Cell; 2012 Jun; 149(7):1607-21. PubMed ID: 22579045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accessibility of introduced cysteines in chemoreceptor transmembrane helices reveals boundaries interior to bracketing charged residues.
    Boldog T; Hazelbauer GL
    Protein Sci; 2004 Jun; 13(6):1466-75. PubMed ID: 15133159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.