BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 7715862)

  • 1. Assessment of the role of dopaminergic systems in lead-induced learning impairments using a repeated acquisition and performance baseline.
    Cohn J; Cory-Slechta DA
    Neurotoxicology; 1994; 15(4):913-26. PubMed ID: 7715862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of lead exposure on learning in a multiple repeated acquisition and performance schedule.
    Cohn J; Cox C; Cory-Slechta DA
    Neurotoxicology; 1993; 14(2-3):329-46. PubMed ID: 8247407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead-induced changes in dopamine D1 sensitivity: modulation by drug discrimination training.
    Cory-Slechta DA; Pokora MJ; Fox RA; O'Mara DJ
    Neurotoxicology; 1996; 17(2):445-57. PubMed ID: 8856740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate and dopamine in nucleus accumbens core and shell: sequence learning versus performance.
    Bauter MR; Brockel BJ; Pankevich DE; Virgolini MB; Cory-Slechta DA
    Neurotoxicology; 2003 Mar; 24(2):227-43. PubMed ID: 12606295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subchronic caffeine administration sensitizes rats to the motor-activating effects of dopamine D(1) and D(2) receptor agonists.
    Cauli O; Morelli M
    Psychopharmacology (Berl); 2002 Jul; 162(3):246-54. PubMed ID: 12122482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsensitivity of lead-exposed rats to the accuracy-impairing and rate-altering effects of MK-801 on a multiple schedule of repeated learning and performance.
    Cohn J; Cory-Slechta DA
    Brain Res; 1993 Jan; 600(2):208-18. PubMed ID: 8435747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of dopamine agonists on fixed interval schedule-controlled behavior are selectively altered by low-level lead exposure.
    Cory-Slechta DA; Pokora MJ; Preston RA
    Neurotoxicol Teratol; 1996; 18(5):565-75. PubMed ID: 8888021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological verification of the presence of D1 and D2 dopamine receptors within the ventral pallidum.
    Napier TC; Maslowski-Cobuzzi RJ
    Synapse; 1994 Jul; 17(3):160-6. PubMed ID: 7974198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellularly recorded response of rat striatal neurons in vitro to fenoldopam and SKF 38393 following lesions of midbrain dopamine cells.
    Twery MJ; Thompson LA; Walters JR
    Synapse; 1994 Sep; 18(1):67-78. PubMed ID: 7825125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleus accumbens dopaminergic medication of fixed interval schedule-controlled behavior and its modulation by low-level lead exposure.
    Cory-Slechta DA; O'Mara DJ; Brockel BJ
    J Pharmacol Exp Ther; 1998 Aug; 286(2):794-805. PubMed ID: 9694936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopaminergic mechanisms controlling urethral function in rats.
    Ogawa T; Seki S; Masuda H; Igawa Y; Nishizawa O; Kuno S; Chancellor MB; de Groat WC; Yoshimura N
    Neurourol Urodyn; 2006; 25(5):480-9. PubMed ID: 16721842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons.
    Ruskin DN; Bergstrom DA; Walters JR
    J Neurophysiol; 2002 Jul; 88(1):487-96. PubMed ID: 12091570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of D1/D2 dopamine receptor synergisms following repeated administration of D1 or D2 receptor selective antagonists: electrophysiological and behavioral studies.
    Hu XT; White FJ
    Synapse; 1994 May; 17(1):43-61. PubMed ID: 7913772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological effects of SKF 38393 in rats with reserpine treatment and 6-hydroxydopamine-induced nigrostriatal lesions reveal two types of plasticity in D1 dopamine receptor modulation of basal ganglia output.
    Huang KX; Walters JR
    J Pharmacol Exp Ther; 1994 Dec; 271(3):1434-43. PubMed ID: 7996456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes.
    DeBoer P; Abercrombie ED
    J Pharmacol Exp Ther; 1996 May; 277(2):775-83. PubMed ID: 8627558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between Pb-induced changes in neurotransmitter system function and behavioral toxicity.
    Cory-Slechta DA
    Neurotoxicology; 1997; 18(3):673-88. PubMed ID: 9339816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotation and striatal c-fos expression after repeated, daily treatment with selective dopamine receptor agonists and levodopa.
    Asin KE; Bednarz L; Nikkel A; Perner R
    J Pharmacol Exp Ther; 1995 Jun; 273(3):1483-90. PubMed ID: 7791123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat.
    Schmidt HD; Pierce RC
    Neuroscience; 2006 Oct; 142(2):451-61. PubMed ID: 16844308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists.
    Berridge KC; Aldridge JW
    Synapse; 2000 Sep; 37(3):194-204. PubMed ID: 10881041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo: tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393.
    Ruskin DN; Rawji SS; Walters JR
    J Pharmacol Exp Ther; 1998 Jul; 286(1):272-81. PubMed ID: 9655869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.