These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 7716164)
1. Predicted secondary and supersecondary structure for the serine-threonine-specific protein phosphatase family. Jenny TF; Gerloff DL; Cohen MA; Benner SA Proteins; 1995 Jan; 21(1):1-10. PubMed ID: 7716164 [TBL] [Abstract][Full Text] [Related]
2. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases. Eckstein JW; Beer-Romero P; Berdo I Protein Sci; 1996 Jan; 5(1):5-12. PubMed ID: 8771191 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity. Kim SJ; Jeong DG; Yoon TS; Son JH; Cho SK; Ryu SE; Kim JH Proteins; 2007 Jan; 66(1):239-45. PubMed ID: 17044055 [TBL] [Abstract][Full Text] [Related]
4. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. Hofmann K; Bucher P; Kajava AV J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650 [TBL] [Abstract][Full Text] [Related]
5. Enhanced binding of RNAP II CTD phosphatase FCP1 to RAP74 following CK2 phosphorylation. Abbott KL; Renfrow MB; Chalmers MJ; Nguyen BD; Marshall AG; Legault P; Omichinski JG Biochemistry; 2005 Mar; 44(8):2732-45. PubMed ID: 15723518 [TBL] [Abstract][Full Text] [Related]
6. Protein phosphatases: structures and implications. Jia Z Biochem Cell Biol; 1997; 75(1):17-26. PubMed ID: 9192069 [TBL] [Abstract][Full Text] [Related]
7. The beta12-beta13 loop of protein phosphatase-1 is involved in activity regulation. Xie X; Xue C; Huang W; Wei Q IUBMB Life; 2006 Aug; 58(8):487-92. PubMed ID: 16916787 [TBL] [Abstract][Full Text] [Related]
8. Bona fide prediction of aspects of protein conformation. Assigning interior and surface residues from patterns of variation and conservation in homologous protein sequences. Benner SA; Badcoe I; Cohen MA; Gerloff DL J Mol Biol; 1994 Jan; 235(3):926-58. PubMed ID: 8289328 [TBL] [Abstract][Full Text] [Related]
9. An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-Family Ser/Thr protein phosphatase. Pullen KE; Ng HL; Sung PY; Good MC; Smith SM; Alber T Structure; 2004 Nov; 12(11):1947-54. PubMed ID: 15530359 [TBL] [Abstract][Full Text] [Related]
10. Structural analysis of the protein phosphatase 1 docking motif: molecular description of binding specificities identifies interacting proteins. Meiselbach H; Sticht H; Enz R Chem Biol; 2006 Jan; 13(1):49-59. PubMed ID: 16426971 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Kissinger CR; Parge HE; Knighton DR; Lewis CT; Pelletier LA; Tempczyk A; Kalish VJ; Tucker KD; Showalter RE; Moomaw EW Nature; 1995 Dec; 378(6557):641-4. PubMed ID: 8524402 [TBL] [Abstract][Full Text] [Related]
12. Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Endo S; Zhou X; Connor J; Wang B; Shenolikar S Biochemistry; 1996 Apr; 35(16):5220-8. PubMed ID: 8611507 [TBL] [Abstract][Full Text] [Related]
13. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site. Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312 [TBL] [Abstract][Full Text] [Related]
14. Predicting the conformation of proteins from sequences. Progress and future progress. Benner SA J Mol Recognit; 1995; 8(1-2):9-28. PubMed ID: 7598957 [TBL] [Abstract][Full Text] [Related]
15. Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Barton GJ; Cohen PT; Barford D Eur J Biochem; 1994 Feb; 220(1):225-37. PubMed ID: 8119291 [TBL] [Abstract][Full Text] [Related]
16. Conservation of polyproline II helices in homologous proteins: implications for structure prediction by model building. Adzhubei AA; Sternberg MJ Protein Sci; 1994 Dec; 3(12):2395-410. PubMed ID: 7756993 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the C-terminal domain of the two-component system transmitter protein nitrogen regulator II (NRII; NtrB), regulator of nitrogen assimilation in Escherichia coli. Song Y; Peisach D; Pioszak AA; Xu Z; Ninfa AJ Biochemistry; 2004 Jun; 43(21):6670-8. PubMed ID: 15157101 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional structure prediction of the NAD binding site of proton-pumping transhydrogenase from Escherichia coli. Fjellström O; Olausson T; Hu X; Källebring B; Ahmad S; Bragg PD; Rydström J Proteins; 1995 Feb; 21(2):91-104. PubMed ID: 7777492 [TBL] [Abstract][Full Text] [Related]
20. A predicted consensus structure for the N-terminal fragment of the heat shock protein HSP90 family. Gerloff DL; Cohen FE; Korostensky C; Turcotte M; Gonnet GH; Benner SA Proteins; 1997 Mar; 27(3):450-8. PubMed ID: 9094746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]