These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 7716527)

  • 1. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor.
    Hidalgo P; MacKinnon R
    Science; 1995 Apr; 268(5208):307-10. PubMed ID: 7716527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agitoxin footprinting the shaker potassium channel pore.
    Gross A; MacKinnon R
    Neuron; 1996 Feb; 16(2):399-406. PubMed ID: 8789954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis.
    Ranganathan R; Lewis JH; MacKinnon R
    Neuron; 1996 Jan; 16(1):131-9. PubMed ID: 8562077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
    Goldstein SA; Pheasant DJ; Miller C
    Neuron; 1994 Jun; 12(6):1377-88. PubMed ID: 7516689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic and structural interactions between delta-dendrotoxin and a voltage-gated potassium channel.
    Imredy JP; MacKinnon R
    J Mol Biol; 2000 Mar; 296(5):1283-94. PubMed ID: 10698633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles.
    Eriksson MA; Roux B
    Biophys J; 2002 Nov; 83(5):2595-609. PubMed ID: 12414693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural conservation in prokaryotic and eukaryotic potassium channels.
    MacKinnon R; Cohen SL; Kuo A; Lee A; Chait BT
    Science; 1998 Apr; 280(5360):106-9. PubMed ID: 9525854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor.
    MacKinnon R; Heginbotham L; Abramson T
    Neuron; 1990 Dec; 5(6):767-71. PubMed ID: 1702643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of maurotoxin, a four disulfide-bridged toxin from the chactoid scorpion Scorpio maurus, on Shaker K+ channels.
    Carlier E; Avdonin V; Geib S; Fajloun Z; Kharrat R; Rochat H; Sabatier JM; Hoshi T; De Waard M
    J Pept Res; 2000 Jun; 55(6):419-27. PubMed ID: 10888198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutation in S6 of Shaker potassium channels decreases the K+ affinity of an ion binding site revealing ion-ion interactions in the pore.
    Ogielska EM; Aldrich RW
    J Gen Physiol; 1998 Aug; 112(2):243-57. PubMed ID: 9689030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel.
    Durell SR; Guy HR
    Neuropharmacology; 1996; 35(7):761-73. PubMed ID: 8938709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR.
    Lange A; Giller K; Hornig S; Martin-Eauclaire MF; Pongs O; Becker S; Baldus M
    Nature; 2006 Apr; 440(7086):959-62. PubMed ID: 16612389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel.
    Naranjo D; Miller C
    Neuron; 1996 Jan; 16(1):123-30. PubMed ID: 8562075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. kappa-Conotoxin PVIIA is a peptide inhibiting the shaker K+ channel.
    Shon KJ; Stocker M; Terlau H; Stühmer W; Jacobsen R; Walker C; Grilley M; Watkins M; Hillyard DR; Gray WR; Olivera BM
    J Biol Chem; 1998 Jan; 273(1):33-8. PubMed ID: 9417043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.
    Peigneur S; Yamaguchi Y; Kawano C; Nose T; Nirthanan S; Gopalakrishnakone P; Tytgat J; Sato K
    Biochemistry; 2016 May; 55(21):2927-35. PubMed ID: 27159046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of maurotoxin action on Shaker potassium channels.
    Avdonin V; Nolan B; Sabatier JM; De Waard M; Hoshi T
    Biophys J; 2000 Aug; 79(2):776-87. PubMed ID: 10920011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification, characterization, and synthesis of an inward-rectifier K+ channel inhibitor from scorpion venom.
    Lu Z; MacKinnon R
    Biochemistry; 1997 Jun; 36(23):6936-40. PubMed ID: 9188688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.
    Gao YD; Garcia ML
    Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A marine snail neurotoxin shares with scorpion toxins a convergent mechanism of blockade on the pore of voltage-gated K channels.
    García E; Scanlon M; Naranjo D
    J Gen Physiol; 1999 Jul; 114(1):141-57. PubMed ID: 10398697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.