These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7716907)

  • 21. Synergistic Internal Ribosome Entry Site/MicroRNA-Based Approach for Flavivirus Attenuation and Live Vaccine Development.
    Tsetsarkin KA; Liu G; Volkova E; Pletnev AG
    mBio; 2017 Apr; 8(2):. PubMed ID: 28420742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Laboratory methods of controlling immunogenicity of vaccines against tick-borne encephalitis].
    Sokolova ED
    Tr Inst Im Pastera; 1989; 65():90-8. PubMed ID: 2560849
    [No Abstract]   [Full Text] [Related]  

  • 23. A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness.
    Goto A; Hayasaka D; Yoshii K; Mizutani T; Kariwa H; Takashima I
    Vaccine; 2003 Sep; 21(25-26):4043-51. PubMed ID: 12922141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effectors of in vivo delayed hypersensitivity in experimental flavivirus infections and vaccination against tick-borne encephalitis in mice].
    Lipovka VA; KhozinskiÄ­ VV; Semenov BF
    Zh Mikrobiol Epidemiol Immunobiol; 1984 Oct; (10):83-8. PubMed ID: 6098109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The highly attenuated E5"14" plaque-cloned derivative from the Langat TP21 E5 strain. Isolation and properties.
    Mayer V
    Acta Virol; 1973 May; 17(3):263. PubMed ID: 4147148
    [No Abstract]   [Full Text] [Related]  

  • 26. [Characteristics of the response of mice with temporary immunodepression to the administration of live or inactivated vaccine against tick-borne encephalitis].
    Vargin VV; Semenov BF
    Vopr Virusol; 1979; (1):52-7. PubMed ID: 217179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathogenicity of tick-borne encephalitis virus isolated in Hokkaido, Japan in mouse model.
    Chiba N; Iwasaki T; Mizutani T; Kariwa H; Kurata T; Takashima I
    Vaccine; 1999 Feb; 17(7-8):779-87. PubMed ID: 10067683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infectious cDNA clones of Langat tick-borne flavivirus that differ from their parent in peripheral neurovirulence.
    Campbell MS; Pletnev AG
    Virology; 2000 Mar; 269(1):225-37. PubMed ID: 10725214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence of the genes encoding the structural proteins of the low-virulence tick-borne flaviviruses Langat TP21 and Yelantsev.
    Mandl CW; Iacono-Connors L; Wallner G; Holzmann H; Kunz C; Heinz FX
    Virology; 1991 Dec; 185(2):891-5. PubMed ID: 1720591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice.
    Pletnev AG; Bray M; Lai CJ
    J Virol; 1993 Aug; 67(8):4956-63. PubMed ID: 8331735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of tick-borne encephalitis DNA vaccines in monkeys.
    Schmaljohn C; Custer D; VanderZanden L; Spik K; Rossi C; Bray M
    Virology; 1999 Oct; 263(1):166-74. PubMed ID: 10544091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The possibility of preparing a live vaccine against tick-borne encephalitis from Malay langat virus TP-21].
    Il'enko VI; Platonov VG; Prozorova IN; Smorodintsev AA
    Tr Inst Im Pastera; 1989; 65():126-32. PubMed ID: 2560847
    [No Abstract]   [Full Text] [Related]  

  • 33. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis.
    Mandl CW
    Virus Res; 2005 Aug; 111(2):161-74. PubMed ID: 15871909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid substitution(s) in the stem-anchor region of langat virus envelope protein attenuates mouse neurovirulence.
    Holbrook MR; Ni H; Shope RE; Barrett AD
    Virology; 2001 Jul; 286(1):54-61. PubMed ID: 11448158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Residual neurovirulence of the chimera of Langat and Denge-4 flaviviruses in intracerebral infection of monkeys].
    Karganova GG; Pripuzova NS; Tereshkina NV; Gmyl' LV; Dzhivanian TI; Rumiantsev AA; Lashkevich VA
    Vopr Virusol; 2005; 50(1):27-31. PubMed ID: 15747868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.
    de Fabritus L; Nougairède A; Aubry F; Gould EA; de Lamballerie X
    PLoS One; 2016; 11(8):e0159564. PubMed ID: 27548676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Comparative study of inactivated cultured vaccines against tick-borne encephalitis manufactured in Russia and in Austria by the "Immuno" firm].
    Vorob'eva MS; Rasshchepkina MN; Ladyzhenskaia IP; Gorbunov MA; Pavlova LI; Bektimirov TA
    Vopr Virusol; 1996; 41(5):221-4. PubMed ID: 8967069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vaccinia virus recombinant expressing gene of tick-borne encephalitis virus non-structural NS1 protein elicits protective activity in mice.
    Khoretonenko MV; Vorovitch MF; Zakharova LG; Pashvykina GV; Ovsyannikova NV; Stephenson JR; Timofeev AV; Altstein AD; Shneider AM
    Immunol Lett; 2003 Dec; 90(2-3):161-3. PubMed ID: 14687719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of systems for delivering antigens and plasmid DNA for intranasal immunization against tick-borne encephalitis virus.
    Goncharova EP; Ryzhikov AB; Bulychev LE; Sizov AA; Lebedev LR; Poryvaev VD; Karpenko LI; Il'ichev AA
    Wien Klin Wochenschr; 2002 Jul; 114(13-14):630-5. PubMed ID: 12422616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biologic and immunogenic properties of Langat TP-21 virus.
    Smorodintsev AA; Ilyenko VI; Platonov VG
    Jpn J Med Sci Biol; 1967 Dec; 20 Suppl():132-7. PubMed ID: 4968626
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.