These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Do the non-catalytic polysaccharide-binding domains and linker regions enhance the biobleaching properties of modular xylanases? Rixon JE; Clarke JH; Hazlewood GP; Hoyland RW; McCarthy AJ; Gilbert HJ Appl Microbiol Biotechnol; 1996 Dec; 46(5-6):514-20. PubMed ID: 9008884 [TBL] [Abstract][Full Text] [Related]
3. Evidence for a general role for high-affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Millward-Sadler SJ; Poole DM; Henrissat B; Hazlewood GP; Clarke JH; Gilbert HJ Mol Microbiol; 1994 Jan; 11(2):375-82. PubMed ID: 8170399 [TBL] [Abstract][Full Text] [Related]
4. The thermostabilizing domain of the modular xylanase XynA of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage beta-1,3/beta-1, 4-glucan. Meissner K; Wassenberg D; Liebl W Mol Microbiol; 2000 May; 36(4):898-912. PubMed ID: 10844677 [TBL] [Abstract][Full Text] [Related]
5. Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Bolam DN; Xie H; White P; Simpson PJ; Hancock SM; Williamson MP; Gilbert HJ Biochemistry; 2001 Feb; 40(8):2468-77. PubMed ID: 11327868 [TBL] [Abstract][Full Text] [Related]
6. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Fernandes AC; Fontes CM; Gilbert HJ; Hazlewood GP; Fernandes TH; Ferreira LM Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306 [TBL] [Abstract][Full Text] [Related]
7. Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Fontes CM; Hazlewood GP; Morag E; Hall J; Hirst BH; Gilbert HJ Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):151-8. PubMed ID: 7717969 [TBL] [Abstract][Full Text] [Related]
8. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Gill J; Rixon JE; Bolam DN; McQueen-Mason S; Simpson PJ; Williamson MP; Hazlewood GP; Gilbert HJ Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):473-80. PubMed ID: 10455036 [TBL] [Abstract][Full Text] [Related]
9. Exploring the cellulose/xylan specificity of the beta-1,4-glycanase cex from Cellulomonas fimi through crystallography and mutation. Notenboom V; Birsan C; Warren RA; Withers SG; Rose DR Biochemistry; 1998 Apr; 37(14):4751-8. PubMed ID: 9537990 [TBL] [Abstract][Full Text] [Related]
10. A family IIb xylan-binding domain has a similar secondary structure to a homologous family IIa cellulose-binding domain but different ligand specificity. Simpson PJ; Bolam DN; Cooper A; Ciruela A; Hazlewood GP; Gilbert HJ; Williamson MP Structure; 1999 Jul; 7(7):853-64. PubMed ID: 10425686 [TBL] [Abstract][Full Text] [Related]
11. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Winterhalter C; Heinrich P; Candussio A; Wich G; Liebl W Mol Microbiol; 1995 Feb; 15(3):431-44. PubMed ID: 7783614 [TBL] [Abstract][Full Text] [Related]
12. A novel thermostable multidomain 1,4-beta-xylanase from 'Caldibacillus cellulovorans' and effect of its xylan-binding domain on enzyme activity. Sunna A; Gibbs MD; Bergquist PL Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2947-2955. PubMed ID: 11065373 [TBL] [Abstract][Full Text] [Related]
13. Xylanase XynA from the hyperthermophilic bacterium Thermotoga maritima: structure and stability of the recombinant enzyme and its isolated cellulose-binding domain. Wassenberg D; Schurig H; Liebl W; Jaenicke R Protein Sci; 1997 Aug; 6(8):1718-26. PubMed ID: 9260284 [TBL] [Abstract][Full Text] [Related]
14. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Ferreira LM; Durrant AJ; Hall J; Hazlewood GP; Gilbert HJ Biochem J; 1990 Jul; 269(1):261-4. PubMed ID: 2115772 [TBL] [Abstract][Full Text] [Related]
15. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. Tomme P; Driver DP; Amandoron EA; Miller RC; Antony R; Warren J; Kilburn DG J Bacteriol; 1995 Aug; 177(15):4356-63. PubMed ID: 7635821 [TBL] [Abstract][Full Text] [Related]
16. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Ali MK; Hayashi H; Karita S; Goto M; Kimura T; Sakka K; Ohmiya K Biosci Biotechnol Biochem; 2001 Jan; 65(1):41-7. PubMed ID: 11272844 [TBL] [Abstract][Full Text] [Related]
17. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. Charnock SJ; Spurway TD; Xie H; Beylot MH; Virden R; Warren RA; Hazlewood GP; Gilbert HJ J Biol Chem; 1998 Nov; 273(48):32187-99. PubMed ID: 9822697 [TBL] [Abstract][Full Text] [Related]
18. Evidence for substrate binding of a recombinant thermostable xylanase originating from Rhodothermus marinus. Karlsson EN; Bartonek-RoxÄ E; Holst O FEMS Microbiol Lett; 1998 Nov; 168(1):1-7. PubMed ID: 9812357 [TBL] [Abstract][Full Text] [Related]
19. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Black GW; Rixon JE; Clarke JH; Hazlewood GP; Theodorou MK; Morris P; Gilbert HJ Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):515-20. PubMed ID: 8912689 [TBL] [Abstract][Full Text] [Related]