These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Primary structure of horse serotransferrin glycans. Demonstration that heterogeneity is related to the number of glycans and to the presence of N-acetylneuraminic acid and N-acetyl-4-O-acetylneuraminic acid. Coddeville B; Stratil A; Wieruszeski JM; Strecker G; Montreuil J; Spik G Eur J Biochem; 1989 Dec; 186(3):583-90. PubMed ID: 2606106 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of trisialylated biantennary glycans isolated from mouse serum transferrin. Characterization of the sequence Neu5Gc(alpha 2-3)Gal(beta 1-3)[Neu5Gc(alpha 2-6)]GlcNAc(beta 1-2)Man. Coddeville B; Regoeczi E; Strecker G; Plancke Y; Spik G Biochim Biophys Acta; 2000 Jul; 1475(3):321-8. PubMed ID: 10913832 [TBL] [Abstract][Full Text] [Related]
4. Primary structure of the glycans from mouse serum and milk transferrins. Leclercq Y; Sawatzki G; Wieruszeski JM; Montreuil J; Spik G Biochem J; 1987 Nov; 247(3):571-8. PubMed ID: 3122730 [TBL] [Abstract][Full Text] [Related]
5. Complete sequence analysis of rat transferrin and expression of transferrin but not lactoferrin in the digestive glands. Hoshino A; Hisayasu S; Shimada T Comp Biochem Physiol B Biochem Mol Biol; 1996 Mar; 113(3):491-7. PubMed ID: 8829802 [TBL] [Abstract][Full Text] [Related]
6. Carbohydrate structures of beta-trace protein from human cerebrospinal fluid: evidence for "brain-type" N-glycosylation. Hoffmann A; Nimtz M; Wurster U; Conradt HS J Neurochem; 1994 Dec; 63(6):2185-96. PubMed ID: 7525874 [TBL] [Abstract][Full Text] [Related]
7. Evidence for the glycosylation of porcine serum transferrin at a single site located within the C-terminal lobe. Sharma ND; Evans RW; Patel KJ; Gorinsky B; Mallet AI; Aitken A Biochim Biophys Acta; 1994 Jun; 1206(2):286-8. PubMed ID: 8003533 [TBL] [Abstract][Full Text] [Related]
8. Isolation, biochemical and immunological characterisation of two sea urchin glycoproteins bearing sulphated poly(sialic acid) polysaccharides rich in N-glycolyl neuraminic acid. Karamanos NK; Manouras A; Anagnostides S; Makatsori E; Tsegenidis T; Antonopoulos CA Biochimie; 1996; 78(3):171-82. PubMed ID: 8831948 [TBL] [Abstract][Full Text] [Related]
9. N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase. Ailor E; Takahashi N; Tsukamoto Y; Masuda K; Rahman BA; Jarvis DL; Lee YC; Betenbaugh MJ Glycobiology; 2000 Aug; 10(8):837-47. PubMed ID: 10929010 [TBL] [Abstract][Full Text] [Related]
10. Glycosylation of bile-salt-stimulated lipase from human milk: comparison of native and recombinant forms. Landberg E; Påhlsson P; Krotkiewski H; Strömqvist M; Hansson L; Lundblad A Arch Biochem Biophys; 1997 Aug; 344(1):94-102. PubMed ID: 9244386 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive characterization of the site-specific N-glycosylation of wild-type and recombinant human lactoferrin expressed in the milk of transgenic cloned cattle. Yu T; Guo C; Wang J; Hao P; Sui S; Chen X; Zhang R; Wang P; Yu G; Zhang L; Dai Y; Li N Glycobiology; 2011 Feb; 21(2):206-24. PubMed ID: 20943674 [TBL] [Abstract][Full Text] [Related]
12. Studies on the role of glycosylation in the origin of the electrophoretic variants for rat corticosteroid-binding globulin. Ali S; Bassett JR Steroids; 1995 Nov; 60(11):743-52. PubMed ID: 8585098 [TBL] [Abstract][Full Text] [Related]
13. Charge forms of serum and whey transferrin in rat differ in the sialic acid content of their glycan chains: immunological implications. Donaldson AB; Grigor MR Biochem Int; 1991 Feb; 23(3):525-32. PubMed ID: 1877990 [TBL] [Abstract][Full Text] [Related]
14. Alternative splicing of lactophorin mRNA from lactating mammary gland of the camel (Camelus dromedarius). Kappeler S; Farah Z; Puhan Z J Dairy Sci; 1999 Oct; 82(10):2084-93. PubMed ID: 10531593 [TBL] [Abstract][Full Text] [Related]
15. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
16. Regulation of mammary gland factor/Stat5a during mammary gland development. Kazansky AV; Raught B; Lindsey SM; Wang YF; Rosen JM Mol Endocrinol; 1995 Nov; 9(11):1598-609. PubMed ID: 8584036 [TBL] [Abstract][Full Text] [Related]
17. 'Brain-type' N-glycosylation of asialo-transferrin from human cerebrospinal fluid. Hoffmann A; Nimtz M; Getzlaff R; Conradt HS FEBS Lett; 1995 Feb; 359(2-3):164-8. PubMed ID: 7867791 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a GlyCAM1-like gene (glycosylation-dependent cell adhesion molecule 1) which is highly and specifically expressed in the lactating bovine mammary gland. Groenen MA; Dijkhof RJ; van der Poel JJ Gene; 1995 Jun; 158(2):189-95. PubMed ID: 7607540 [TBL] [Abstract][Full Text] [Related]
19. N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits. Koles K; van Berkel PH; Pieper FR; Nuijens JH; Mannesse ML; Vliegenthart JF; Kamerling JP Glycobiology; 2004 Jan; 14(1):51-64. PubMed ID: 14514717 [TBL] [Abstract][Full Text] [Related]
20. N-glycans of recombinant human acid alpha-glucosidase expressed in the milk of transgenic rabbits. Jongen SP; Gerwig GJ; Leeflang BR; Koles K; Mannesse ML; van Berkel PH; Pieper FR; Kroos MA; Reuser AJ; Zhou Q; Jin X; Zhang K; Edmunds T; Kamerling JP Glycobiology; 2007 Jun; 17(6):600-19. PubMed ID: 17293352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]