BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 7718242)

  • 1. Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans.
    Colbert HA; Bargmann CI
    Neuron; 1995 Apr; 14(4):803-12. PubMed ID: 7718242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1.
    L'Etoile ND; Bargmann CI
    Neuron; 2000 Mar; 25(3):575-86. PubMed ID: 10774726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans.
    Colbert HA; Bargmann CI
    Learn Mem; 1997; 4(2):179-91. PubMed ID: 10456062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two forms of learning following training to a single odorant in Caenorhabditis elegans AWC neurons.
    Pereira S; van der Kooy D
    J Neurosci; 2012 Jun; 32(26):9035-44. PubMed ID: 22745502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons.
    Wes PD; Bargmann CI
    Nature; 2001 Apr; 410(6829):698-701. PubMed ID: 11287957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans.
    O'Halloran DM; Altshuler-Keylin S; Lee JI; L'Etoile ND
    PLoS Genet; 2009 Dec; 5(12):e1000761. PubMed ID: 20011101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in
    Kitazono T; Hara-Kuge S; Matsuda O; Inoue A; Fujiwara M; Ishihara T
    J Neurosci; 2017 Oct; 37(42):10240-10251. PubMed ID: 28924007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odour concentration-dependent olfactory preference change in C. elegans.
    Yoshida K; Hirotsu T; Tagawa T; Oda S; Wakabayashi T; Iino Y; Ishihara T
    Nat Commun; 2012 Mar; 3():739. PubMed ID: 22415830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation.
    Lee JI; O'Halloran DM; Eastham-Anderson J; Juang BT; Kaye JA; Scott Hamilton O; Lesch B; Goga A; L'Etoile ND
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6016-21. PubMed ID: 20220099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular readout of long-term olfactory adaptation in C. elegans.
    He C; Lee JI; L'etoile N; O'Halloran D
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23287821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans: adaptation and habituation.
    Bernhard N; van der Kooy D
    Learn Mem; 2000; 7(4):199-212. PubMed ID: 10940320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compartmentalized cGMP Responses of Olfactory Sensory Neurons in
    Shidara H; Hotta K; Oka K
    J Neurosci; 2017 Apr; 37(14):3753-3763. PubMed ID: 28270568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type.
    Khan M; Hartmann AH; O'Donnell MP; Piccione M; Pandey A; Chao PH; Dwyer ND; Bargmann CI; Sengupta P
    PLoS Biol; 2022 Jun; 20(6):e3001677. PubMed ID: 35696430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Odorant-selective genes and neurons mediate olfaction in C. elegans.
    Bargmann CI; Hartwieg E; Horvitz HR
    Cell; 1993 Aug; 74(3):515-27. PubMed ID: 8348618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redundant neural circuits regulate olfactory integration.
    Yang W; Wu T; Tu S; Qin Y; Shen C; Li J; Choi MK; Duan F; Zhang Y
    PLoS Genet; 2022 Jan; 18(1):e1010029. PubMed ID: 35100258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans.
    Sengupta P; Colbert HA; Kimmel BE; Dwyer N; Bargmann CI
    Ciba Found Symp; 1993; 179():235-44; discussion 244-50. PubMed ID: 8168378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TBX2/TBX3 transcriptional factor homologue controls olfactory adaptation in Caenorhabditis elegans.
    Miyahara K; Suzuki N; Ishihara T; Tsuchiya E; Katsura I
    J Neurobiol; 2004 Feb; 58(3):392-402. PubMed ID: 14750151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-dependent anion channel (VDAC-1) is required for olfactory sensing in Caenorhabditis elegans.
    Uozumi T; Hamakawa M; Deno YK; Nakajo N; Hirotsu T
    Genes Cells; 2015 Oct; 20(10):802-16. PubMed ID: 26223767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.
    He C; Altshuler-Keylin S; Daniel D; L'Etoile ND; O'Halloran D
    Neurosci Lett; 2016 Oct; 632():71-8. PubMed ID: 27561605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Olfactory cortical adaptation facilitates detection of odors against background.
    Kadohisa M; Wilson DA
    J Neurophysiol; 2006 Mar; 95(3):1888-96. PubMed ID: 16251260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.