These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 7718586)
41. Azapeptides as inhibitors and active site titrants for cysteine proteinases. Xing R; Hanzlik RP J Med Chem; 1998 Apr; 41(8):1344-51. PubMed ID: 9548822 [TBL] [Abstract][Full Text] [Related]
42. Orally potent human renin inhibitors derived from angiotensinogen transition state: design, synthesis, and mode of interaction. Iizuka K; Kamijo T; Harada H; Akahane K; Kubota T; Umeyama H; Ishida T; Kiso Y J Med Chem; 1990 Oct; 33(10):2707-14. PubMed ID: 2120440 [TBL] [Abstract][Full Text] [Related]
43. Lysosomal cysteine proteases (cathepsins): promising drug targets. Turk D; Guncar G Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):203-13. PubMed ID: 12554931 [TBL] [Abstract][Full Text] [Related]
44. Probing of primed and unprimed sites of calpains: Design, synthesis and evaluation of epoxysuccinyl-peptide derivatives as selective inhibitors. Dókus LE; Menyhárd DK; Tantos Á; Hudecz F; Bánóczi Z Eur J Med Chem; 2014 Jul; 82():274-80. PubMed ID: 24915003 [TBL] [Abstract][Full Text] [Related]
45. Combinatorial library of serine and cysteine protease inhibitors that interact with both the S and S' binding sites. Abato P; Conroy JL; Seto CT J Med Chem; 1999 Sep; 42(19):4001-9. PubMed ID: 10508448 [TBL] [Abstract][Full Text] [Related]
46. Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft. Renko M; Požgan U; Majera D; Turk D FEBS J; 2010 Oct; 277(20):4338-45. PubMed ID: 20860624 [TBL] [Abstract][Full Text] [Related]
47. Binding of the cysteine proteinases papain and cathepsin B-like to coated laminin: use of synthetic peptides from laminin and from the laminin binding region of the beta 1 integrin subunit to characterize the binding site. Dalet-Fumeron V; Boudjennah L; Pagano M Arch Biochem Biophys; 1998 Oct; 358(2):283-90. PubMed ID: 9784241 [TBL] [Abstract][Full Text] [Related]
48. Strategy in inhibition of cathepsin B, a target in tumor invasion and metastasis. Lim IT; Meroueh SO; Lee M; Heeg MJ; Mobashery S J Am Chem Soc; 2004 Aug; 126(33):10271-7. PubMed ID: 15315439 [TBL] [Abstract][Full Text] [Related]
49. CA074 methyl ester: a proinhibitor for intracellular cathepsin B. Buttle DJ; Murata M; Knight CG; Barrett AJ Arch Biochem Biophys; 1992 Dec; 299(2):377-80. PubMed ID: 1444478 [TBL] [Abstract][Full Text] [Related]
50. Crystal structure of phenylmethanesulfonyl fluoride-treated human chymase at 1.9 A. McGrath ME; Mirzadegan T; Schmidt BF Biochemistry; 1997 Nov; 36(47):14318-24. PubMed ID: 9400368 [TBL] [Abstract][Full Text] [Related]
51. Comparative study on specificities of rat cathepsin L and papain: amino acid differences at substrate-binding sites are involved in their specificities. Koga H; Yamada H; Nishimura Y; Kato K; Imoto T J Biochem; 1990 Dec; 108(6):976-82. PubMed ID: 2089043 [TBL] [Abstract][Full Text] [Related]
52. Endosomal proteolysis of insulin-like growth factor-I at its C-terminal D-domain by cathepsin B. Authier F; Kouach M; Briand G FEBS Lett; 2005 Aug; 579(20):4309-16. PubMed ID: 16051222 [TBL] [Abstract][Full Text] [Related]
53. The inactivation of bovine cathepsin B by novel N-chloro-acetyl-dipeptides: application of the Houghten 'tea bag' methodology to inhibitor synthesis. Gilmore BF; Harriott P; Walker B Biochem Biophys Res Commun; 2005 Aug; 333(4):1284-8. PubMed ID: 15978544 [TBL] [Abstract][Full Text] [Related]
54. Crystal structure of human cathepsin S. McGrath ME; Palmer JT; Brömme D; Somoza JR Protein Sci; 1998 Jun; 7(6):1294-302. PubMed ID: 9655332 [TBL] [Abstract][Full Text] [Related]
55. Proposed amino acid sequence and the 1.63 A X-ray crystal structure of a plant cysteine protease, ervatamin B: some insights into the structural basis of its stability and substrate specificity. Biswas S; Chakrabarti C; Kundu S; Jagannadham MV; Dattagupta JK Proteins; 2003 Jun; 51(4):489-97. PubMed ID: 12784208 [TBL] [Abstract][Full Text] [Related]
56. Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure. Lang R; Kocourek A; Braun M; Tschesche H; Huber R; Bode W; Maskos K J Mol Biol; 2001 Sep; 312(4):731-42. PubMed ID: 11575928 [TBL] [Abstract][Full Text] [Related]
57. Crystal structure of a complex of HIV-1 protease with a dihydroxyethylene-containing inhibitor: comparisons with molecular modeling. Thanki N; Rao JK; Foundling SI; Howe WJ; Moon JB; Hui JO; Tomasselli AG; Heinrikson RL; Thaisrivongs S; Wlodawer A Protein Sci; 1992 Aug; 1(8):1061-72. PubMed ID: 1304383 [TBL] [Abstract][Full Text] [Related]
58. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Bown DP; Wilkinson HS; Jongsma MA; Gatehouse JA Insect Biochem Mol Biol; 2004 Apr; 34(4):305-20. PubMed ID: 15041015 [TBL] [Abstract][Full Text] [Related]
59. Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: an examination of the subsite pocket. Yamamoto M; Tsujishita H; Hori N; Ohishi Y; Inoue S; Ikeda S; Okada Y J Med Chem; 1998 Apr; 41(8):1209-17. PubMed ID: 9548812 [TBL] [Abstract][Full Text] [Related]