These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 7718591)
1. Preferential distribution of the fluorescent phospholipid probes NBD-phosphatidylcholine and rhodamine-phosphatidylethanolamine in the exofacial leaflet of acetylcholine receptor-rich membranes from Torpedo marmorata. Gutiérrez-Merino C; Bonini de Romanelli IC; Pietrasanta LI; Barrantes FJ Biochemistry; 1995 Apr; 34(14):4846-55. PubMed ID: 7718591 [TBL] [Abstract][Full Text] [Related]
2. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer. Wolf DE; Winiski AP; Ting AE; Bocian KM; Pagano RE Biochemistry; 1992 Mar; 31(11):2865-73. PubMed ID: 1550813 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric distribution of phospholipids in acetylcholine receptor-rich membranes from T. marmorata electric organ. Bonini de Romanelli IC; Aveldaño MI; Barrantes FJ Int J Biochem; 1990; 22(7):785-9. PubMed ID: 2401378 [TBL] [Abstract][Full Text] [Related]
5. The use of cobalt ions as a collisional quencher to probe surface charge and stability of fluorescently labeled bilayer vesicles. Morris SJ; Bradley D; Blumenthal R Biochim Biophys Acta; 1985 Sep; 818(3):365-72. PubMed ID: 4041444 [TBL] [Abstract][Full Text] [Related]
6. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane. Antollini SS; Barrantes FJ Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433 [TBL] [Abstract][Full Text] [Related]
7. Translational diffusion of acetylcholine receptor (monomeric and dimeric forms) of Torpedo marmorata reconstituted into phospholipid bilayers studied by fluorescence recovery after photobleaching. Criado M; Vaz WL; Barrantes FJ; Jovin TM Biochemistry; 1982 Nov; 21(23):5750-5. PubMed ID: 6897514 [No Abstract] [Full Text] [Related]
8. Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein. Bosch I; Dunussi-Joannopoulos K; Wu RL; Furlong ST; Croop J Biochemistry; 1997 May; 36(19):5685-94. PubMed ID: 9153408 [TBL] [Abstract][Full Text] [Related]
9. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283 [TBL] [Abstract][Full Text] [Related]
10. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes. Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729 [TBL] [Abstract][Full Text] [Related]
11. Two pools of cholesterol in acetylcholine receptor-rich membranes from Torpedo. Leibel WS; Firestone LL; Legler DC; Braswell LM; Miller KW Biochim Biophys Acta; 1987 Feb; 897(2):249-60. PubMed ID: 2434127 [TBL] [Abstract][Full Text] [Related]
12. Rapid transbilayer phospholipid redistribution associated with exocytotic release of neurotransmitters from cholinergic nerve terminals isolated from electric ray Narke japonica. Lee D; Hirashima N; Kirino Y Neurosci Lett; 2000 Sep; 291(1):21-4. PubMed ID: 10962144 [TBL] [Abstract][Full Text] [Related]
13. Phospholipid translocation from the outer to the inner leaflet of synaptic vesicle membranes isolated from the electric organ of Japanese electric ray Narke japonica. Lee DS; Anzai K; Hirashima N; Kirino Y J Biochem; 1998 Oct; 124(4):798-803. PubMed ID: 9756626 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic and ionization properties of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids in model membranes. Chattopadhyay A; London E Biochim Biophys Acta; 1988 Feb; 938(1):24-34. PubMed ID: 3337814 [TBL] [Abstract][Full Text] [Related]
15. Dithionite quenching rate measurement of the inside-outside membrane bilayer distribution of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids. Angeletti C; Nichols JW Biochemistry; 1998 Oct; 37(43):15114-9. PubMed ID: 9790674 [TBL] [Abstract][Full Text] [Related]
16. The rate of lipid transfer during fusion depends on the structure of fluorescent lipid probes: a new chain-labeled lipid transfer probe pair. Malinin VS; Haque ME; Lentz BR Biochemistry; 2001 Jul; 40(28):8292-9. PubMed ID: 11444975 [TBL] [Abstract][Full Text] [Related]
17. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Slater SJ; Ho C; Taddeo FJ; Kelly MB; Stubbs CD Biochemistry; 1993 Apr; 32(14):3714-21. PubMed ID: 8466911 [TBL] [Abstract][Full Text] [Related]
18. Determination of lipid asymmetry in human red cells by resonance energy transfer. Connor J; Schroit AJ Biochemistry; 1987 Aug; 26(16):5099-105. PubMed ID: 3663645 [TBL] [Abstract][Full Text] [Related]
19. 12-O-tetradecanoylphorbol-13-acetate inhibits aminophospholipid translocase activity and modifies the lateral motions of fluorescent phospholipid analogs in the plasma membrane of bovine aortic endothelial cells. Julien M; Millot C; Tocanne JF; Tournier JF Exp Cell Res; 1997 Jul; 234(1):125-31. PubMed ID: 9223377 [TBL] [Abstract][Full Text] [Related]