BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7718893)

  • 1. Role of gelsolin in the formation and organization of triton-soluble F-actin during myeloid differentiation of HL-60 cells.
    Watts RG
    Blood; 1995 Apr; 85(8):2212-21. PubMed ID: 7718893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of triton-insoluble and triton-soluble F-actin pools in calcium-activated human polymorphonuclear leukocytes: evidence for regulation by gelsolin.
    Watts RG; Deaton JD; Howard TH
    Cell Motil Cytoskeleton; 1995; 30(2):136-45. PubMed ID: 7606806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dephosphorylation of a 34kd triton-insoluble F-actin pool protein is associated with phorbol ester-induced actin polymerization in human polymorphonuclear leukocytes.
    Watts RG
    Hematopathol Mol Hematol; 1996; 10(1-2):69-84. PubMed ID: 8792149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tropomyosin, alpha-actinin, and actin binding protein 280 in stabilizing Triton insoluble F-actin in basal and chemotactic factor activated neutrophils.
    Watts RG; Howard TH
    Cell Motil Cytoskeleton; 1994; 28(2):155-64. PubMed ID: 8087874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adherence of human phagocytes results in characteristic reorganization and redistribution of distinct F-actin pools.
    Watts RG
    Hematopathol Mol Hematol; 1996; 10(4):223-32. PubMed ID: 9042665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a gelsolin-rich, labile F-actin pool in human polymorphonuclear leukocytes.
    Watts RG; Howard TH
    Cell Motil Cytoskeleton; 1992; 21(1):25-37. PubMed ID: 1311641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms for actin reorganization in chemotactic factor-activated polymorphonuclear leukocytes.
    Watts RG; Howard TH
    Blood; 1993 May; 81(10):2750-7. PubMed ID: 8490182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils.
    Deaton JD; Guerrero T; Howard TH
    Mol Biol Cell; 1992 Dec; 3(12):1427-35. PubMed ID: 1337290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal transduction and the regulation of actin conformation during myeloid maturation: studies in HL60 cells.
    Sham RL; Packman CH; Abboud CN; Lichtman MA
    Blood; 1991 Jan; 77(2):363-70. PubMed ID: 1985701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predominant induction of gelsolin and actin-binding protein during myeloid differentiation.
    Kwiatkowski DJ
    J Biol Chem; 1988 Sep; 263(27):13857-62. PubMed ID: 2843540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein.
    Barkalow K; Witke W; Kwiatkowski DJ; Hartwig JH
    J Cell Biol; 1996 Jul; 134(2):389-99. PubMed ID: 8707824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelsolin-actin interaction and actin polymerization in human neutrophils.
    Howard T; Chaponnier C; Yin H; Stossel T
    J Cell Biol; 1990 Jun; 110(6):1983-91. PubMed ID: 2161855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The actin released from profilin--actin complexes is insufficient to account for the increase in F-actin in chemoattractant-stimulated polymorphonuclear leukocytes.
    Southwick FS; Young CL
    J Cell Biol; 1990 Jun; 110(6):1965-73. PubMed ID: 2351690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of intracellular actin levels induced by phorboldiester in human HL-60 leukemia cells susceptible or resistant to differentiation, and the effects of protein kinase inhibitors.
    Uemura Y; Nishikawa M; Komada F; Shirakawa S
    Leuk Res; 1989; 13(7):545-52. PubMed ID: 2761290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of correlation between induction of chemotactic peptide receptors and stimulus-induced actin polymerization in HL-60 cells treated with dibutyryl cyclic adenosine monophosphate or retinoic acid.
    Rao KM; Currie MS; Ruff JC; Cohen HJ
    Cancer Res; 1988 Dec; 48(23):6721-6. PubMed ID: 2846157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of filamin and controlled linear shear on the microheterogeneity of F-actin/gelsolin gels.
    Cortese JD; Frieden C
    Cell Motil Cytoskeleton; 1990; 17(3):236-49. PubMed ID: 2176572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking.
    Janmey PA; Chaponnier C; Lind SE; Zaner KS; Stossel TP; Yin HL
    Biochemistry; 1985 Jul; 24(14):3714-23. PubMed ID: 2994715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional properties of HL60 cells matured with all-trans-retinoic acid and DMSO: differences in response to interleukin-8 and fMLP.
    Sham RL; Phatak PD; Belanger KA; Packman CH
    Leuk Res; 1995 Jan; 19(1):1-6. PubMed ID: 7837814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin.
    Janmey PA; Iida K; Yin HL; Stossel TP
    J Biol Chem; 1987 Sep; 262(25):12228-36. PubMed ID: 3040735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in actin and actin-binding proteins during the differentiation of HL-60 leukemia cells.
    Leung MF; Lin TS; Sartorelli AC
    Cancer Res; 1992 Jun; 52(11):3063-6. PubMed ID: 1534272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.