These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7719848)

  • 21. Crystal engineering: a case study using the 24 kDa fragment of the DNA gyrase B subunit from Escherichia coli.
    D'Arcy A; Stihle M; Kostrewa D; Dale G
    Acta Crystallogr D Biol Crystallogr; 1999 Sep; 55(Pt 9):1623-5. PubMed ID: 10489468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On a sequence similarity between ribosomal protein S5 and DNA binding protein II.
    Wilson KS; Kimura M; Dijk J
    FEBS Lett; 1985 Mar; 182(2):249-52. PubMed ID: 3884370
    [No Abstract]   [Full Text] [Related]  

  • 23. The hinge region of Escherichia coli ribosomal protein L7/L12 is required for factor binding and GTP hydrolysis.
    Dey D; Oleinikov AV; Traut RR
    Biochimie; 1995; 77(12):925-30. PubMed ID: 8834773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-based sequence alignment of elongation factors Tu and G with related GTPases involved in translation.
    Avarsson A
    J Mol Evol; 1995 Dec; 41(6):1096-104. PubMed ID: 8587108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus.
    Jiang Y; Nock S; Nesper M; Sprinzl M; Sigler PB
    Biochemistry; 1996 Aug; 35(32):10269-78. PubMed ID: 8756682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A ribosomal protein from Thermus thermophilus is homologous to a general shock protein.
    Gryaznova OI; Davydova NL; Gongadze GM; Jonsson BH; Garber MB; Liljas A
    Biochimie; 1996; 78(11-12):915-9. PubMed ID: 9150868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An intact conformation at the tip of elongation factor G domain IV is functionally important.
    Martemyanov KA; Yarunin AS; Liljas A; Gudkov AT
    FEBS Lett; 1998 Aug; 434(1-2):205-8. PubMed ID: 9738479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribonuclease P protein structure: evolutionary origins in the translational apparatus.
    Stams T; Niranjanakumari S; Fierke CA; Christianson DW
    Science; 1998 May; 280(5364):752-5. PubMed ID: 9563955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression and purification of Thermus thermophilus elongation factors G, Tu, and Ts from Escherichia coli.
    Blank J; Grillenbeck NW; Kreutzer R; Sprinzl M
    Protein Expr Purif; 1995 Oct; 6(5):637-45. PubMed ID: 8535157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor.
    Hosaka H; Nakagawa A; Tanaka I; Harada N; Sano K; Kimura M; Yao M; Wakatsuki S
    Structure; 1997 Sep; 5(9):1199-208. PubMed ID: 9331423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural model for the selenocysteine-specific elongation factor SelB.
    Hilgenfeld R; Böck A; Wilting R
    Biochimie; 1996; 78(11-12):971-8. PubMed ID: 9150874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants.
    Johanson U; Aevarsson A; Liljas A; Hughes D
    J Mol Biol; 1996 May; 258(3):420-32. PubMed ID: 8642600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities.
    Steiner T; Kaiser JT; Marinkoviç S; Huber R; Wahl MC
    EMBO J; 2002 Sep; 21(17):4641-53. PubMed ID: 12198166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of TTHA0061, an uncharacterized protein from Thermus thermophilus HB8, reveals a novel fold.
    Tanaka T; Niwa H; Yutani K; Kuramitsu S; Yokoyama S; Kumarevel T
    Biochem Biophys Res Commun; 2010 Sep; 400(2):258-64. PubMed ID: 20728427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The amino-acid sequences of the Bacillus stearothermophilus ribosomal proteins S17 and S21 and their comparison to homologous proteins of other ribosomes.
    Herfurth E; Hirano H; Wittmann-Liebold B
    Biol Chem Hoppe Seyler; 1991 Oct; 372(10):955-61. PubMed ID: 1772592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning of genes of the aminopeptidase T family from Thermus thermophilus HB8 and Bacillus stearothermophilus NCIB8924: apparent similarity to the leucyl aminopeptidase family.
    Motoshima H; Minagawa E; Tsukasaki F; Kaminogawa S
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1710-7. PubMed ID: 9362117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and mechanism of DNA topoisomerase II.
    Berger JM; Gamblin SJ; Harrison SC; Wang JC
    Nature; 1996 Jan; 379(6562):225-32. PubMed ID: 8538787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structures of prokaryotic ribosomal proteins: implications for RNA binding and evolution.
    Ramakrishnan V; Davies C; Gerchman SE; Golden BL; Hoffmann DW; Jaishree TN; Kyila JH; Porter S; White SW
    Biochem Cell Biol; 1995; 73(11-12):979-86. PubMed ID: 8722013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of a conserved ribosomal protein-RNA complex.
    Conn GL; Draper DE; Lattman EE; Gittis AG
    Science; 1999 May; 284(5417):1171-4. PubMed ID: 10325228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the ribosomal protein S6 from Thermus thermophilus.
    Lindahl M; Svensson LA; Liljas A; Sedelnikova SE; Eliseikina IA; Fomenkova NP; Nevskaya N; Nikonov SV; Garber MB; Muranova TA
    EMBO J; 1994 Mar; 13(6):1249-54. PubMed ID: 8137808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.