These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 7720104)
1. Potential role of the flavin-containing monooxygenases in the metabolism of endogenous compounds. Elfarra AA Chem Biol Interact; 1995 Apr; 96(1):47-55. PubMed ID: 7720104 [TBL] [Abstract][Full Text] [Related]
2. Oxidation of cysteine S-conjugates by rabbit liver microsomes and cDNA-expressed flavin-containing mono-oxygenases: studies with S-(1,2-dichlorovinyl)-L-cysteine, S-(1,2,2-trichlorovinyl)-L-cysteine, S-allyl-L-cysteine, and S-benzyl-L-cysteine. Ripp SL; Overby LH; Philpot RM; Elfarra AA Mol Pharmacol; 1997 Mar; 51(3):507-15. PubMed ID: 9058607 [TBL] [Abstract][Full Text] [Related]
3. Flavin-containing monooxygenase (FMO)-dependent metabolism of methionine and evidence for FMO3 being the major FMO involved in methionine sulfoxidation in rabbit liver and kidney microsomes. Duescher RJ; Lawton MP; Philpot RM; Elfarra AA J Biol Chem; 1994 Jul; 269(26):17525-30. PubMed ID: 8021260 [TBL] [Abstract][Full Text] [Related]
4. Potential roles of flavin-containing monooxygenases in sulfoxidation reactions of l-methionine, N-acetyl-l-methionine and peptides containing l-methionine. Elfarra AA; Krause RJ Biochim Biophys Acta; 2005 Jan; 1703(2):183-9. PubMed ID: 15680226 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the methionine S-oxidase activity of rat liver and kidney microsomes: immunochemical and kinetic evidence for FMO3 being the major catalyst. Krause RJ; Ripp SL; Sausen PJ; Overby LH; Philpot RM; Elfarra AA Arch Biochem Biophys; 1996 Sep; 333(1):109-16. PubMed ID: 8806760 [TBL] [Abstract][Full Text] [Related]
6. Human kidney flavin-containing monooxygenases and their potential roles in cysteine s-conjugate metabolism and nephrotoxicity. Krause RJ; Lash LH; Elfarra AA J Pharmacol Exp Ther; 2003 Jan; 304(1):185-91. PubMed ID: 12490590 [TBL] [Abstract][Full Text] [Related]
7. Sulfoxidation of cysteine and mercapturic acid conjugates of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A). Altuntas TG; Park SB; Kharasch ED Chem Res Toxicol; 2004 Mar; 17(3):435-45. PubMed ID: 15025515 [TBL] [Abstract][Full Text] [Related]
8. Sulfoxides as urinary metabolites of S-allyl-L-cysteine in rats: evidence for the involvement of flavin-containing monooxygenases. Krause RJ; Glocke SC; Elfarra AA Drug Metab Dispos; 2002 Oct; 30(10):1137-42. PubMed ID: 12228191 [TBL] [Abstract][Full Text] [Related]
9. Sulfoxidation of mercapturic acids derived from tri- and tetrachloroethene by cytochromes P450 3A: a bioactivation reaction in addition to deacetylation and cysteine conjugate beta-lyase mediated cleavage. Werner M; Birner G; Dekant W Chem Res Toxicol; 1996; 9(1):41-9. PubMed ID: 8924615 [TBL] [Abstract][Full Text] [Related]
10. Prochiral sulfoxidation as a probe for multiple forms of the microsomal flavin-containing monooxygenase: studies with rabbit FMO1, FMO2, FMO3, and FMO5 expressed in Escherichia coli. Rettie AE; Lawton MP; Sadeque AJ; Meier GP; Philpot RM Arch Biochem Biophys; 1994 Jun; 311(2):369-77. PubMed ID: 8203899 [TBL] [Abstract][Full Text] [Related]
11. Isoform specificity of N-deacetyl ketoconazole by human and rabbit flavin-containing monooxygenases. Rodriguez RJ; Miranda CL Drug Metab Dispos; 2000 Sep; 28(9):1083-6. PubMed ID: 10950853 [TBL] [Abstract][Full Text] [Related]
12. Oxidative metabolism of seleno-L-methionine to L-methionine selenoxide by flavin-containing monooxygenases. Krause RJ; Glocke SC; Sicuri AR; Ripp SL; Elfarra AA Chem Res Toxicol; 2006 Dec; 19(12):1643-9. PubMed ID: 17173378 [TBL] [Abstract][Full Text] [Related]
13. Prochiral sulfides as in vitro probes for multiple forms of the flavin-containing monooxygenase. Rettie AE; Meier GP; Sadeque AJ Chem Biol Interact; 1995 Apr; 96(1):3-15. PubMed ID: 7720102 [TBL] [Abstract][Full Text] [Related]
14. Selenoxidation by flavin-containing monooxygenases as a novel pathway for beta-elimination of selenocysteine Se-conjugates. Rooseboom M; Commandeur JN; Floor GC; Rettie AE; Vermeulen NP Chem Res Toxicol; 2001 Jan; 14(1):127-34. PubMed ID: 11170516 [TBL] [Abstract][Full Text] [Related]
15. Molecular and functional characterization of flavin-containing monooxygenases in cynomolgus macaque. Uno Y; Shimizu M; Yamazaki H Biochem Pharmacol; 2013 Jun; 85(12):1837-47. PubMed ID: 23623750 [TBL] [Abstract][Full Text] [Related]
16. Flavin-containing monooxygenase-dependent stereoselective S-oxygenation and cytotoxicity of cysteine S-conjugates and mercapturates. Park SB; Osterloh JD; Vamvakas S; Hashmi M; Anders MW; Cashman JR Chem Res Toxicol; 1992; 5(2):193-201. PubMed ID: 1643249 [TBL] [Abstract][Full Text] [Related]
17. Roles of cysteine conjugate beta-lyase and S-oxidase in nephrotoxicity: studies with S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine sulfoxide. Lash LH; Sausen PJ; Duescher RJ; Cooley AJ; Elfarra AA J Pharmacol Exp Ther; 1994 Apr; 269(1):374-83. PubMed ID: 8169843 [TBL] [Abstract][Full Text] [Related]
18. Unique monooxygenation pattern indicates novel flavin-containing monooxygenase in liver of rainbow trout. Schlenk D; Yeung C; Rettie A Mar Environ Res; 2004; 58(2-5):499-503. PubMed ID: 15178073 [TBL] [Abstract][Full Text] [Related]
19. Prochiral sulfoxidation as a probe for flavin-containing monooxygenases. Yeung CK; Rettie AE Methods Mol Biol; 2006; 320():163-72. PubMed ID: 16719389 [TBL] [Abstract][Full Text] [Related]
20. Stereo- and regioselective conjugation of S-halovinyl mercapturic acid sulfoxides by glutathione S-transferases. Rosner E; Müller M; Dekant W Chem Res Toxicol; 1998 Jan; 11(1):12-8. PubMed ID: 9477221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]