These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7720252)

  • 1. Electrochemical dehydrogenase-based homogeneous assays in whole blood.
    Yao H; Halsall HB; Heineman WR; Jenkins SH
    Clin Chem; 1995 Apr; 41(4):591-8. PubMed ID: 7720252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow-injection analysis with electrochemical detection of reduced nicotinamide adenine dinucleotide using 2,6-dichloroindophenol as a redox coupling agent.
    Tang HT; Hajizadeh K; Halsall HB; Heineman WR
    Anal Biochem; 1991 Jan; 192(1):243-50. PubMed ID: 2048728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical homogeneous enzyme immunoassay of theophylline in hemolyzed, icteric, and lipemic samples.
    Yao H; Jenkins SH; Pesce AJ; Halsall HB; Heineman WR
    Clin Chem; 1993 Jul; 39(7):1432-4. PubMed ID: 8330402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical enzyme immunoassay for phenytoin by flow-injection analysis incorporating a redox coupling agent.
    Tang HT; Halsall HB; Heineman WR
    Clin Chem; 1991 Feb; 37(2):245-8. PubMed ID: 1993333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amperometric homogeneous competitive immunoassay in a perfluorocarbon emulsion oxygen therapeutic (PEOT).
    Barlag RE; Halsall HB; Heineman WR
    Anal Bioanal Chem; 2013 Apr; 405(11):3541-7. PubMed ID: 23104312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous amperometric immunoassay for theophylline in whole blood.
    Athey D; McNeil CJ; Bailey WR; Hager HJ; Mullen WH; Russell LJ
    Biosens Bioelectron; 1993; 8(9-10):415-9. PubMed ID: 8311938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A viability assay for Candida albicans based on the electron transfer mediator 2,6-dichlorophenolindophenol.
    Hassan RY; Bilitewski U
    Anal Biochem; 2011 Dec; 419(1):26-32. PubMed ID: 21864496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of liposome encapsulation in a combined single-liquid reagent for homogeneous enzyme immunoassay.
    Ullman EF; Tarnowski T; Felgner P; Gibbons I
    Clin Chem; 1987 Sep; 33(9):1579-84. PubMed ID: 3304713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive heterogeneous enzyme immunoassay for theophylline by flow-injection analysis with electrochemical detection of p-aminophenol.
    Gil EP; Tang HT; Halsall HB; Heineman WR; Misiego AS
    Clin Chem; 1990 Apr; 36(4):662-5. PubMed ID: 2138937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow injection determination of glucose, bile acid and ATP using immobilized enzyme reactor and chemiluminescent assay of NAD(P)H.
    Maeda M; Tsuji A; Ohshima N; Hukuoka M
    J Biolumin Chemilumin; 1993; 8(5):241-6. PubMed ID: 8237468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices.
    Noiphung J; Songjaroen T; Dungchai W; Henry CS; Chailapakul O; Laiwattanapaisal W
    Anal Chim Acta; 2013 Jul; 788():39-45. PubMed ID: 23845479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical immunoassay: an ultrasensitive method.
    Halsall HB; Heineman WR
    J Int Fed Clin Chem; 1990 Sep; 2(4):179-87. PubMed ID: 10148952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry in diabetes management.
    Heller A; Feldman B
    Acc Chem Res; 2010 Jul; 43(7):963-73. PubMed ID: 20384299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems.
    Raitman OA; Katz E; Bückmann AF; Willner I
    J Am Chem Soc; 2002 Jun; 124(22):6487-96. PubMed ID: 12033880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mediatorless voltammetric oxidation of NADH and sensing of ethanol.
    Raj CR; Behera S
    Biosens Bioelectron; 2005 Dec; 21(6):949-56. PubMed ID: 16257664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetracyanoquinodimethane-mediated flow injection analysis electrochemical sensor for NADH coupled with dehydrogenase enzymes.
    Pandey PC
    Anal Biochem; 1994 Sep; 221(2):392-6. PubMed ID: 7810883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow injection electrochemical enzyme immunoassay for theophylline using a protein A immunoreactor and p-aminophenyl phosphate-p-aminophenol as the detection system.
    Palmer DA; Edmonds TE; Seare NJ
    Analyst; 1992 Nov; 117(11):1679-82. PubMed ID: 1481995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HemoCue: evaluation of a portable photometric system for determining glucose in whole blood.
    Ashworth L; Gibb I; Alberti KG
    Clin Chem; 1992 Aug; 38(8 Pt 1):1479-82. PubMed ID: 1643718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.