These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 7720551)
1. Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid. Yamada T Development; 1994 Nov; 120(11):3051-62. PubMed ID: 7720551 [TBL] [Abstract][Full Text] [Related]
2. Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Bang AG; Papalopulu N; Kintner C; Goulding MD Development; 1997 May; 124(10):2075-85. PubMed ID: 9169853 [TBL] [Abstract][Full Text] [Related]
3. Mesoderm formation in response to Brachyury requires FGF signalling. Schulte-Merker S; Smith JC Curr Biol; 1995 Jan; 5(1):62-7. PubMed ID: 7535172 [TBL] [Abstract][Full Text] [Related]
4. Regulations in the induction of the organized neural system in amphibian embryos. Yamada T Development; 1990 Nov; 110(3):653-9. PubMed ID: 2088713 [TBL] [Abstract][Full Text] [Related]
5. Two novel chick T-box genes related to mouse Brachyury are expressed in different, non-overlapping mesodermal domains during gastrulation. Knezevic V; De Santo R; Mackem S Development; 1997 Jan; 124(2):411-9. PubMed ID: 9053317 [TBL] [Abstract][Full Text] [Related]
6. A molecular basis for retinoic acid-induced axial truncation. Iulianella A; Beckett B; Petkovich M; Lohnes D Dev Biol; 1999 Jan; 205(1):33-48. PubMed ID: 9882496 [TBL] [Abstract][Full Text] [Related]
7. Brachyury in the gastrula of basal vertebrates. Bruce AEE; Winklbauer R Mech Dev; 2020 Sep; 163():103625. PubMed ID: 32526279 [TBL] [Abstract][Full Text] [Related]
8. Interference with brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways. Conlon FL; Smith JC Dev Biol; 1999 Sep; 213(1):85-100. PubMed ID: 10452848 [TBL] [Abstract][Full Text] [Related]
9. Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis. O'Reilly MA; Smith JC; Cunliffe V Development; 1995 May; 121(5):1351-9. PubMed ID: 7789266 [TBL] [Abstract][Full Text] [Related]
10. Genetic evidence for posterior specification by convergent extension in the Xenopus embryo. Yamada T; Modak SP Dev Growth Differ; 1998 Apr; 40(2):125-32. PubMed ID: 9572355 [TBL] [Abstract][Full Text] [Related]
11. The epithelium of the dorsal marginal zone of Xenopus has organizer properties. Shih J; Keller R Development; 1992 Dec; 116(4):887-99. PubMed ID: 1295742 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Slack JM; Tannahill D Development; 1992 Feb; 114(2):285-302. PubMed ID: 1350531 [TBL] [Abstract][Full Text] [Related]
13. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Schier AF; Neuhauss SC; Helde KA; Talbot WS; Driever W Development; 1997 Jan; 124(2):327-42. PubMed ID: 9053309 [TBL] [Abstract][Full Text] [Related]
14. Role of the Xlim-1 and Xbra genes in anteroposterior patterning of neural tissue by the head and trunk organizer. Taira M; Saint-Jeannet JP; Dawid IB Proc Natl Acad Sci U S A; 1997 Feb; 94(3):895-900. PubMed ID: 9023353 [TBL] [Abstract][Full Text] [Related]
15. Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. Taira M; Otani H; Jamrich M; Dawid IB Development; 1994 Jun; 120(6):1525-36. PubMed ID: 7914163 [TBL] [Abstract][Full Text] [Related]
16. Initial anteroposterior pattern of the zebrafish central nervous system is determined by differential competence of the epiblast. Koshida S; Shinya M; Mizuno T; Kuroiwa A; Takeda H Development; 1998 May; 125(10):1957-66. PubMed ID: 9550728 [TBL] [Abstract][Full Text] [Related]
17. Brachyury, the blastopore and the evolution of the mesoderm. Technau U Bioessays; 2001 Sep; 23(9):788-94. PubMed ID: 11536291 [TBL] [Abstract][Full Text] [Related]
18. The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Wilson V; Manson L; Skarnes WC; Beddington RS Development; 1995 Mar; 121(3):877-86. PubMed ID: 7720590 [TBL] [Abstract][Full Text] [Related]
19. Brachyury establishes the embryonic mesodermal progenitor niche. Martin BL; Kimelman D Genes Dev; 2010 Dec; 24(24):2778-83. PubMed ID: 21159819 [TBL] [Abstract][Full Text] [Related]
20. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Hikasa H; Shibata M; Hiratani I; Taira M Development; 2002 Nov; 129(22):5227-39. PubMed ID: 12399314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]