BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 7720696)

  • 1. A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae.
    Interthal H; Bellocq C; Bähler J; Bashkirov VI; Edelstein S; Heyer WD
    EMBO J; 1995 Mar; 14(6):1057-66. PubMed ID: 7720696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of functional domains in the Sep1 protein (= Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae.
    Bashkirov VI; Solinger JA; Heyer WD
    Chromosoma; 1995 Nov; 104(3):215-22. PubMed ID: 8529461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules.
    Saunders W; Hornack D; Lengyel V; Deng C
    J Cell Biol; 1997 Apr; 137(2):417-31. PubMed ID: 9128252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ROK1, a high-copy-number plasmid suppressor of kem1, encodes a putative ATP-dependent RNA helicase in Saccharomyces cerevisiae.
    Song Y; Kim S; Kim J
    Gene; 1995 Dec; 166(1):151-4. PubMed ID: 8529880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control.
    Johnson AW; Kolodner RD
    Mol Cell Biol; 1995 May; 15(5):2719-27. PubMed ID: 7739552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination.
    Tishkoff DX; Rockmill B; Roeder GS; Kolodner RD
    Genetics; 1995 Feb; 139(2):495-509. PubMed ID: 7713413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule stability in budding yeast: characterization and dosage suppression of a benomyl-dependent tubulin mutant.
    Machin NA; Lee JM; Barnes G
    Mol Biol Cell; 1995 Sep; 6(9):1241-59. PubMed ID: 8534919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease.
    Heyer WD; Johnson AW; Reinhart U; Kolodner RD
    Mol Cell Biol; 1995 May; 15(5):2728-36. PubMed ID: 7739553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins.
    Cottingham FR; Hoyt MA
    J Cell Biol; 1997 Sep; 138(5):1041-53. PubMed ID: 9281582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening.
    Liu Z; Lee A; Gilbert W
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6002-6. PubMed ID: 7597069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sequence of an 11.1 kb fragment on the left arm of Saccharomyces cerevisiae chromosome VII reveals six open reading frames including NSP49, KEM1 and four putative new genes.
    Bertani I; Coglievina M; Zaccaria P; Klima R; Bruschi CV
    Yeast; 1995 Sep; 11(12):1187-94. PubMed ID: 8619317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure.
    Liu Z; Gilbert W
    Cell; 1994 Jul; 77(7):1083-92. PubMed ID: 8020096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of monoclonal antibodies in the functional characterization of the Saccharomyces cerevisiae Sep1 protein.
    Holler A; Bashkirov VI; Solinger JA; Reinhart U; Heyer WD
    Eur J Biochem; 1995 Jul; 231(2):329-36. PubMed ID: 7543408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of S. pombe exonuclease II, a homologue of S. cerevisiae Sep1, for normal mitotic growth and viability.
    Szankasi P; Smith GR
    Curr Genet; 1996 Sep; 30(4):284-93. PubMed ID: 8781170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules.
    Brachat A; Kilmartin JV; Wach A; Philippsen P
    Mol Biol Cell; 1998 May; 9(5):977-91. PubMed ID: 9571234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase.
    Bähler J; Hagens G; Holzinger G; Scherthan H; Heyer WD
    Chromosoma; 1994 Apr; 103(2):129-41. PubMed ID: 8055710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes.
    Hoyt MA; Stearns T; Botstein D
    Mol Cell Biol; 1990 Jan; 10(1):223-34. PubMed ID: 2403635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ctf19p: A novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle.
    Hyland KM; Kingsbury J; Koshland D; Hieter P
    J Cell Biol; 1999 Apr; 145(1):15-28. PubMed ID: 10189365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration.
    DeZwaan TM; Ellingson E; Pellman D; Roof DM
    J Cell Biol; 1997 Sep; 138(5):1023-40. PubMed ID: 9281581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel protein complex promoting formation of functional alpha- and gamma-tubulin.
    Geissler S; Siegers K; Schiebel E
    EMBO J; 1998 Feb; 17(4):952-66. PubMed ID: 9463374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.