These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7721690)

  • 1. Mechanisms of biodegradation of metal-citrate complexes by Pseudomonas fluorescens.
    Joshi-Tope G; Francis AJ
    J Bacteriol; 1995 Apr; 177(8):1989-93. PubMed ID: 7721690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous biodegradation of Ni-citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila.
    Qian J; Li D; Zhan G; Zhang L; Su W; Gao P
    Bioresour Technol; 2012 Jul; 116():66-73. PubMed ID: 22609657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of Fe3+ and Zn2+ promoted biotransformation of Cd-citrate complex and removal of metals from solutions.
    Qian JW; Tao Y; Zhang WJ; He XH; Gao P; Li DP
    J Hazard Mater; 2013 Dec; 263 Pt 2():367-73. PubMed ID: 23820427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: A proteome analysis.
    Poirier I; Hammann P; Kuhn L; Bertrand M
    Aquat Toxicol; 2013 Mar; 128-129():215-32. PubMed ID: 23314334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gallium toxicity and adaptation in Pseudomonas fluorescens.
    al-Aoukaty A; Appanna VD; Falter H
    FEMS Microbiol Lett; 1992 May; 71(3):265-72. PubMed ID: 1624126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cadmium, copper, magnesium, and zinc on the decomposition of citrate by a Klebsiella sp.
    Brynhildsen L; Rosswall T
    Appl Environ Microbiol; 1989 Jun; 55(6):1375-9. PubMed ID: 2764560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: physiological and biochemical aspects.
    Poirier I; Jean N; Guary JC; Bertrand M
    Sci Total Environ; 2008 Nov; 406(1-2):76-87. PubMed ID: 18793794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of complex structure on the biodegradation of iron-citrate complexes.
    Francis AJ; Dodge CJ
    Appl Environ Microbiol; 1993 Jan; 59(1):109-13. PubMed ID: 16348836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolism of aluminum citrate and biosynthesis of oxalic acid in Pseudomonas fluorescens.
    Appanna VD; Hamel RD; Lévasseur R
    Curr Microbiol; 2003 Jul; 47(1):32-9. PubMed ID: 12783190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of uranyl in a quaternary system composed of uranyl, citrate, goethite, and Pseudomonas fluorescens.
    Bencheikh-Latmani R; Leckie JO; Bargar JR
    Environ Sci Technol; 2003 Aug; 37(16):3555-9. PubMed ID: 12953865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater.
    Ansari MI; Malik A
    Bioresour Technol; 2007 Nov; 98(16):3149-53. PubMed ID: 17166714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.
    Cutillas-Barreiro L; Paradelo R; Igrexas-Soto A; Núñez-Delgado A; Fernández-Sanjurjo MJ; Álvarez-Rodriguez E; Garrote G; Nóvoa-Muñoz JC; Arias-Estévez M
    Ecotoxicol Environ Saf; 2016 Sep; 131():118-26. PubMed ID: 27232204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nature of the adaptive lag of Pseudomonas fluorescens toward citrate.
    BARRETT JT; LARSON AD; KALLIO RE
    J Bacteriol; 1953 Feb; 65(2):187-92. PubMed ID: 13034714
    [No Abstract]   [Full Text] [Related]  

  • 14. Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens.
    Edberg F; Kalinowski BE; Holmström SJ; Holm K
    Geobiology; 2010 Sep; 8(4):278-92. PubMed ID: 20456501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.
    Duquène L; Vandenhove H; Tack F; Meers E; Baeten J; Wannijn J
    Sci Total Environ; 2009 Feb; 407(5):1496-505. PubMed ID: 19054545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential bioavailability of copper complexes to bioluminescent Pseudomonas fluorescens reporter strains.
    Nybroe O; Brandt KK; Ibrahim YM; Tom-Petersen A; Holm PE
    Environ Toxicol Chem; 2008 Nov; 27(11):2246-52. PubMed ID: 18532872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of metal-nitrilotriacetate complexes by a Pseudomonas species: mechanism of reaction.
    Firestone MK; Tiedje JM
    Appl Microbiol; 1975 Jun; 29(6):758-64. PubMed ID: 1155932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of cold stress on the proteome of the marine bacterium Pseudomonas fluorescens BA3SM1 and its ability to cope with metal excess.
    Poirier I; Kuhn L; Caplat C; Hammann P; Bertrand M
    Aquat Toxicol; 2014 Dec; 157():120-33. PubMed ID: 25456226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ferric iron on siderophore production and pyrene degradation by Pseudomonas fluorescens 29L.
    Husain S
    Curr Microbiol; 2008 Oct; 57(4):331-4. PubMed ID: 18626691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.
    Jordan I; Kaplan J
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.